Explain primary concept of force.
To bring stationary object in motion force is required. Similarly to slow down object in motion or to stop moving object force is required.
A ball is moving down along slope. By applying force in opposite direction it can be stopped. The external parameter (agency) by which can change state of motion or rest can be changed is called force.
Effect of force on a body can be following :
$(i)$ Force can bring body in rest to motion or body in motion to rest.
$(ii)$ It can increase or decrease speed of object.
$(iii)$ Force can change direction of motion of object.
$(iv)$ Force can change shape of an object.
A rope of length $5\,m$ is kept on frictionless surface and a force of $5\,N$ is applied to one of its end. Find tension in the rope at $1\,m $ from this end ......... $N$
Adjoining figure shows a force of $40\, N$ acting at $30^o$ to the horizontal on a body of mass $5 \,kg$ resting on a smooth horizontal surface. Assuming that the acceleration of free-fall is $10\, ms^{-2}$, which of the following statements is (are) correct?
$[1]$ The horizontal force acting on the body is $20\, N$
$[2]$ The weight of the $5\, kg$ mass acts vertically downwards
$[3]$ The net vertical force acting on the body is $30\, N$
One end of a string of length $l$ is connected to a particle of mass $m$ and the other to a small peg on a smooth horizontal table. If the particle moves in a circle with speed $v$ the net force on the particle (directed towards the centre) is :
$(i) \;T,$ $(ii)\; T-\frac{m v^{2}}{l},$ $(iii)\;T+\frac{m v^{2}}{l},$ $(iv) \;0$
$T$ is the tension in the string. [Choose the correct alternative].
Three blocks of masses ${m_1},\,{m_2}$ and ${m_3}$ are connected by massless strings as shown on a frictionless table. They are pulled with a force ${T_3} = 40\,N$. If ${m_1} = 10\,kg,\,{m_2} = 6\,kg$ and ${m_3} = 4\,kg$, the tension ${T_2}$ will be ........ $N$
Two blocks of mass $2 \,kg$ and $4 kg$ are accelerated with same acceleration by a force $10 \,N$ as shown in figure on a smooth horizontal surface. Then the spring force between the two blocks will be .......... $N$ (spring is massless)