Explain subtraction of vectors.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Subtraction of vectors can be defined in terms of addition of vectors.

We define the difference of two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ as the sum of two vectors $\overrightarrow{\mathrm{A}}$ and $-\overrightarrow{\mathrm{B}}$.

$\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{A}}+(-\overrightarrow{\mathrm{B}})$

Thus, substraction of vectors means adding opposite of a vector in another vector.

In figure (a), $\vec{A}, \vec{B}$ and $-\vec{B}$ is represented.

In figure (b), $-\vec{B}$ is added to $\vec{A}$.

By triangle method for vector addition,

$\overrightarrow{\mathrm{R}_{2}}=\overrightarrow{\mathrm{A}}+(-\overrightarrow{\mathrm{B}})$

$\therefore\overrightarrow{\mathrm{R}_{2}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}$

(For comparison, $\overrightarrow{\mathrm{R}_{1}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$ is shown).

885-s60

Similar Questions

If $y = {1 \over {a - z}},$then ${{dz} \over {dy}} = $

The coordinates of a moving particle at any time $t$ are given by $x = a\, t^2$ and $y = b\, t^2$. The speed of the particle is

  • [AIIMS 2012]

Assertion $A$ : If $A, B, C, D$ are four points on a semi-circular arc with centre at $'O'$ such that $|\overrightarrow{{AB}}|=|\overrightarrow{{BC}}|=|\overrightarrow{{CD}}|$, then $\overrightarrow{{AB}}+\overrightarrow{{AC}}+\overrightarrow{{AD}}=4 \overrightarrow{{AO}}+\overrightarrow{{OB}}+\overrightarrow{{OC}}$

Reason $R$ : Polygon law of vector addition yields $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{A D}=2 \overrightarrow{A O}$

In the light of the above statements, choose the most appropriate answer from the options given below

  • [JEE MAIN 2021]

Following sets of three forces act on a body. Whose resultant cannot be zero

When $n$ vectors of different magnitudes are added, we get a null vector. Then the value of $n$ cannot be