Explain subtraction of vectors.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Subtraction of vectors can be defined in terms of addition of vectors.

We define the difference of two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ as the sum of two vectors $\overrightarrow{\mathrm{A}}$ and $-\overrightarrow{\mathrm{B}}$.

$\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{A}}+(-\overrightarrow{\mathrm{B}})$

Thus, substraction of vectors means adding opposite of a vector in another vector.

In figure (a), $\vec{A}, \vec{B}$ and $-\vec{B}$ is represented.

In figure (b), $-\vec{B}$ is added to $\vec{A}$.

By triangle method for vector addition,

$\overrightarrow{\mathrm{R}_{2}}=\overrightarrow{\mathrm{A}}+(-\overrightarrow{\mathrm{B}})$

$\therefore\overrightarrow{\mathrm{R}_{2}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}$

(For comparison, $\overrightarrow{\mathrm{R}_{1}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$ is shown).

885-s60

Similar Questions

Let $\overrightarrow C = \overrightarrow A  + \overrightarrow B$

$(A)$ It is possible to have $| \overrightarrow C | < | \overrightarrow A |$ and $ | \overrightarrow C | < | \overrightarrow B|$

$(B)$ $|\overrightarrow C |$  is always greater than $|\overrightarrow A |$

$(C)$ $|\overrightarrow C |$ may be equal to $|\overrightarrow A | + |\overrightarrow B|$

$(D)$ $|\overrightarrow C |$ is never equal to $|\overrightarrow A | + |\overrightarrow B|$

Which of the above is correct

Figure shows $ABCDEF$ as a regular hexagon. What is the value of $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ (in $\overrightarrow {AO} $)

There are two force vectors, one of $5\, N$ and other of $12\, N $ at what angle the two vectors be added to get resultant vector of $17\, N, 7\, N $ and $13 \,N$ respectively

The magnitudes of vectors $\vec A,\,\vec B$ and $\vec C$ are $3, 4$ and $5$ units respectively. If $\vec A + \vec B = \vec C$, the angle between $\vec A$ and $\vec B$ is

  • [AIPMT 1988]

Two forces acting on point $A$ along their side and having magnitude reciprocal to length of side then resultant of these forces will be proportional to