Explain subtraction of vectors.
Subtraction of vectors can be defined in terms of addition of vectors.
We define the difference of two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ as the sum of two vectors $\overrightarrow{\mathrm{A}}$ and $-\overrightarrow{\mathrm{B}}$.
$\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{A}}+(-\overrightarrow{\mathrm{B}})$
Thus, substraction of vectors means adding opposite of a vector in another vector.
In figure (a), $\vec{A}, \vec{B}$ and $-\vec{B}$ is represented.
In figure (b), $-\vec{B}$ is added to $\vec{A}$.
By triangle method for vector addition,
$\overrightarrow{\mathrm{R}_{2}}=\overrightarrow{\mathrm{A}}+(-\overrightarrow{\mathrm{B}})$
$\therefore\overrightarrow{\mathrm{R}_{2}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}$
(For comparison, $\overrightarrow{\mathrm{R}_{1}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$ is shown).
Let $\overrightarrow C = \overrightarrow A + \overrightarrow B$
$(A)$ It is possible to have $| \overrightarrow C | < | \overrightarrow A |$ and $ | \overrightarrow C | < | \overrightarrow B|$
$(B)$ $|\overrightarrow C |$ is always greater than $|\overrightarrow A |$
$(C)$ $|\overrightarrow C |$ may be equal to $|\overrightarrow A | + |\overrightarrow B|$
$(D)$ $|\overrightarrow C |$ is never equal to $|\overrightarrow A | + |\overrightarrow B|$
Which of the above is correct
Figure shows $ABCDEF$ as a regular hexagon. What is the value of $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ (in $\overrightarrow {AO} $)
There are two force vectors, one of $5\, N$ and other of $12\, N $ at what angle the two vectors be added to get resultant vector of $17\, N, 7\, N $ and $13 \,N$ respectively
The magnitudes of vectors $\vec A,\,\vec B$ and $\vec C$ are $3, 4$ and $5$ units respectively. If $\vec A + \vec B = \vec C$, the angle between $\vec A$ and $\vec B$ is
Two forces acting on point $A$ along their side and having magnitude reciprocal to length of side then resultant of these forces will be proportional to