The sum of two forces acting at a point is $16\, N.$ If the resultant force is $8\, N$ and its direction is perpendicular to minimum force then the forces are

  • A

    $6\, N$ and $10\, N$

  • B

    $8\, N$ and $ 8\, N$

  • C

    $4\, N$ and $12\, N$

  • D

    $2\, N$ and $14 \,N$

Similar Questions

The resultant of two vectors $\vec{A}$ and $\vec{B}$ is perpendicular to $\overrightarrow{\mathrm{A}}$ and its magnitude is half that of $\vec{B}$. The angle between vectors $\vec{A}$ and $\vec{B}$ is . . . . . . 

  • [JEE MAIN 2024]

Let $\overrightarrow C = \overrightarrow A  + \overrightarrow B$

$(A)$ It is possible to have $| \overrightarrow C | < | \overrightarrow A |$ and $ | \overrightarrow C | < | \overrightarrow B|$

$(B)$ $|\overrightarrow C |$  is always greater than $|\overrightarrow A |$

$(C)$ $|\overrightarrow C |$ may be equal to $|\overrightarrow A | + |\overrightarrow B|$

$(D)$ $|\overrightarrow C |$ is never equal to $|\overrightarrow A | + |\overrightarrow B|$

Which of the above is correct

If $\left| {{{\vec v}_1} + {{\vec v}_2}} \right| = \left| {{{\vec v}_1} - {{\vec v}_2}} \right|$ and ${{{\vec v}_1}}$ and ${{{\vec v}_2}}$ are finite, then

Two forces each numerically equal to $10$ $dynes$ are acting as shown in the adjoining figure, then the magnitude of resultant is.........$dyne$

The magnitude of a given vector with end points $ (4, -4, 0)$ and $(-2, -2, 0)$ must be