સદિશોની બાદબાકી સમજાવો.
સદિશોની બાદબાકીને સદિશોના સરવાળા સ્વરૂપે વ્યાખ્યાયિત કરી શકાય છે.
બે સદિશો $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ ના તફાવતને $\overrightarrow{ A }$ અને $-\overrightarrow{ B }$ ના સરવાળા સ્વરૂપે રજૂ કરી શકાય છે.
$\overrightarrow{ A }-\overrightarrow{ B }=\overrightarrow{ A }+(-\overrightarrow{ B })$
આમ, બે સદિશોની બાદબાકી એટલે એક સદિશમાં બીજા સદિશનો વિરોધી સદિશ ઉમેરવો.
આકૃતિ $(a)$ માં $\overrightarrow{ A }, \overrightarrow{ B }$ તથા$\overrightarrow{B}$ દર્શાવેલ છે.
આકૃતિ $(b)$ માં $\overrightarrow{ A }$ માં $\overrightarrow{-B}$ ને ઉમેરેલ છે.
સદિશોના સરવાળા માટે ત્રિકોણની રીત પ્રમાણે,
$\overrightarrow{ R _{2}}=\overrightarrow{ A }+(-\overrightarrow{ B })$
$\therefore \overrightarrow{ R _{2}}=\overrightarrow{ A }-\overrightarrow{ B }$
(સરખામણી માટે સદિશ $\overrightarrow{ R _{1}}=\overrightarrow{ A }+\overrightarrow{ B }$ સદિશ દર્શાવેલ છે.)
સદિશ $\mathop A\limits^ \to \,$ અને $ \,\mathop B\limits^ \to $ x-અક્ષની સાપેક્ષે અનુક્રમે $20^0$ અને $110^0$ ખૂણો બનાવે છે. આ સદિશોનું મૂલ્ય અનુક્રમે $5 m$ અને $12 m$ છેતો તેના પરિણામી સદીશે x-અક્ષ સાથે રચાતા ખૂણાનું મૂલ્ય ..... મળેે.
સદિશોના સરવાળા માટે જૂથનો નિયમ સમજાવો. અથવા સાબિત કરો કે સદિશ સરવાળા માટે જૂથના નિયમનું પાલન થાય છે.
$\overrightarrow A \, = \,2\widehat i\, + \,3\widehat j + 4\widehat k$ , $\overrightarrow B \, = \widehat {\,i} - \widehat j + \widehat k$ ની બાદબાકી બૈજિક રીતે કરો.
સદિશ $A$ અને $B$ નો પરિણામી સદિશ,સદિશ $A$ ને લંબ છે,અને તેનું મૂલ્ય $B$ સદિશથી અડધું છે,તો સદિશ $A$ અને $ B$ વચ્ચેનો ખૂણો ....... $^o$ થશે.
સદિશ $\vec{A}$ અને $\vec{B}$ એવા છે કે જેથી $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ થાય. બે સદિશ વચ્ચેનો ખૂણો કેટલો હશે?