ત્રિકોણમિતીય ગુણોત્તરો $\sin A , \sec A$ અને $\tan A$ ને $\cot A$ નાં પદોમાં દર્શાવો.
We know that,
$\operatorname{cosec}^{2} A=1+\cot ^{2} A$
$\frac{1}{\operatorname{cosec}^{2} A}=\frac{1}{1+\cot ^{2} A}$
$\sin ^{2} A=\frac{1}{1+\cot ^{2} A}$
$\sin A=\pm \frac{1}{\sqrt{1+\cot ^{2} A}}$
$\sqrt{1+\cot ^{2} A}$ will always be positive as we are adding two positive quantities.
Therefore, $\sin A =\frac{1}{\sqrt{1+\cot ^{2} A }}$
We know that, $\tan A =\frac{\sin A }{\cos A }$
However, $\cot A=\frac{\cos A}{\sin A}$
Therefore, $\tan A =\frac{1}{\cot A }$
Also, $\sec ^{2} A=1+\tan ^{2} A$
$=1+\frac{1}{\cot ^{2} A}$
$=\frac{\cot ^{2} A+1}{\cot ^{2} A}$
$\sec A=\frac{\sqrt{\cot ^{2} A+1}}{\cot A}$
$\sin 67^{\circ}+\cos 75^{\circ}$ ને $0^{\circ}$ અને $45^{\circ}$ વચ્ચેના માપવાળા ખૂણાના ત્રિકોણમિતીય ગુણોત્તર તરીકે દર્શાવો.
જો $15 \cot A =8$ હોય, તો $\sin A$ અને $\sec A$ શોધો.
$(\sec A+\tan A)(1-\sin A)=..........$
કિંમત શોધો :
$\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$
નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :
$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$