ખૂણા $\angle A$ ના બધા જ ત્રિકોણમિતીય ગુણોત્તરોને $\sec$ $A$ નાં પદોમાં દર્શાવો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that,

$\cos A=\frac{1}{\sec A}$

Also, $\sin ^{2} A+\cos ^{2} A=1$

$\sin ^{2} A=1-\cos ^{2} A$

$\sin A=\sqrt{1-\left(\frac{1}{\sec A}\right)^{2}}$

$=\sqrt{\frac{\sec ^{2} A-1}{\sec ^{2} A}}=\frac{\sqrt{\sec ^{2} A-1}}{\sec A}$

$\tan ^{2} A+1=\sec ^{2} A$

$\tan ^{2} A=\sec ^{2} A-1$

$\tan A =\sqrt{\sec ^{2} A -1}$

$\cot A =\frac{\cos A }{\sin A } =\frac{\frac{1}{\sec A}}{\frac{\sqrt{\sec ^{2} A-1}}{\sec A}}$

$=\frac{1}{\sqrt{\sec ^{2} A-1}}$

$\operatorname{cosec} A =\frac{1}{\sin A }=\frac{\sec A }{\sqrt{\sec ^{2} A -1}}$

Similar Questions

જેમાં $\angle C$ કાટખૂણો હોય, તેવો કોઈ $\triangle ACB$ લો. $AB = 29$ એકમ, $BC = 21$ એકમ અને $\angle ABC =\theta$ (જુઓ આકૃતિ) હોય, તો નિમ્નલિખિત મૂલ્ય શોધો:

$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$

$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$

નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :

$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$

નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :

$\sin (A+B)=\sin A+\sin B$

કિંમત શોધો :

$2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$

નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિતકરો :

$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$