ખૂણા $\angle A$ ના બધા જ ત્રિકોણમિતીય ગુણોત્તરોને $\sec$ $A$ નાં પદોમાં દર્શાવો.
We know that,
$\cos A=\frac{1}{\sec A}$
Also, $\sin ^{2} A+\cos ^{2} A=1$
$\sin ^{2} A=1-\cos ^{2} A$
$\sin A=\sqrt{1-\left(\frac{1}{\sec A}\right)^{2}}$
$=\sqrt{\frac{\sec ^{2} A-1}{\sec ^{2} A}}=\frac{\sqrt{\sec ^{2} A-1}}{\sec A}$
$\tan ^{2} A+1=\sec ^{2} A$
$\tan ^{2} A=\sec ^{2} A-1$
$\tan A =\sqrt{\sec ^{2} A -1}$
$\cot A =\frac{\cos A }{\sin A } =\frac{\frac{1}{\sec A}}{\frac{\sqrt{\sec ^{2} A-1}}{\sec A}}$
$=\frac{1}{\sqrt{\sec ^{2} A-1}}$
$\operatorname{cosec} A =\frac{1}{\sin A }=\frac{\sec A }{\sqrt{\sec ^{2} A -1}}$
નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :
$\theta$ ના દરેક મૂલ્ય માટે $\sin \theta=\cos \theta$ થાય.
$\angle A$ અને $\angle B$ એવા લઘુકોણો છે કે, જેથી $\cos A =\cos B .$ સાબિત કરો કે $\angle A =\angle B$.
નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :
$A =0^{\circ}$ માટે $\cot$ $A$ અવ્યાખ્યાયિત છે.
$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=.......$
ત્રિકોણમિતીય ગુણોત્તરો $\sin A , \sec A$ અને $\tan A$ ને $\cot A$ નાં પદોમાં દર્શાવો.