Figure shows $ABCDEF$ as a regular hexagon. What is the value of $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ (in $\overrightarrow {AO} $)

6-7

  • A

    $\overrightarrow {AO} $

  • B

    $2\overrightarrow {AO} $

  • C

    $4\overrightarrow {AO} $

  • D

    $6\overrightarrow {AO} $

Similar Questions

If the resultant of the two forces has a magnitude smaller than the magnitude of larger force, the two forces must be

Two vectors $\overrightarrow{ A }$ and $\overrightarrow{ B }$ have equal magnitudes. If magnitude of $\overrightarrow{ A }+\overrightarrow{ B }$ is equal to two times the magnitude of $\overrightarrow{ A }-\overrightarrow{ B }$, then the angle between $\overrightarrow{ A }$ and $\overrightarrow{ B }$ will be .......................

  • [JEE MAIN 2022]

The vector that must be added to the vector $\hat i - 3\hat j + 2\hat k$ and $3\hat i + 6\hat j - 7\hat k$ so that the resultant vector is a unit vector along the $y-$axis is

If the angle between $\hat a$ and $\hat b$ is $60^o$, then which of the following  vector $(s)$ have magnitude one

$(A)$ $\frac{\hat a + \hat b}{\sqrt 3}$     $(B)$ $\hat a + \widehat b$     $(C)$ $\hat a$      $(D)$ $\hat b$

Two forces, ${F_1}$ and ${F_2}$ are acting on a body. One force is double that of the other force and the resultant is equal to the greater force. Then the angle between the two forces is