Figure shows $ABCDEF$ as a regular hexagon. What is the value of $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ (in $\overrightarrow {AO} $)
$\overrightarrow {AO} $
$2\overrightarrow {AO} $
$4\overrightarrow {AO} $
$6\overrightarrow {AO} $
Give the names of two methods for vector addition. Write the law of parallogram for vector addition.
Assertion $A$ : If $A, B, C, D$ are four points on a semi-circular arc with centre at $'O'$ such that $|\overrightarrow{{AB}}|=|\overrightarrow{{BC}}|=|\overrightarrow{{CD}}|$, then $\overrightarrow{{AB}}+\overrightarrow{{AC}}+\overrightarrow{{AD}}=4 \overrightarrow{{AO}}+\overrightarrow{{OB}}+\overrightarrow{{OC}}$
Reason $R$ : Polygon law of vector addition yields $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{A D}=2 \overrightarrow{A O}$
In the light of the above statements, choose the most appropriate answer from the options given below
If a particle moves from point $P (2,3,5)$ to point $Q (3,4,5)$. Its displacement vector be
Two forces of magnitude $8 \,N$ and $15 \,N$ respectively act at a point. If the resultant force is $17 \,N$, the angle between the forces has to be .......
Following sets of three forces act on a body. Whose resultant cannot be zero