चित्र में $ABCDEF$ एक समषट्भुज है। $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ का मान है ($\overrightarrow {AO} $ में)
$\overrightarrow {AO} $
$2\overrightarrow {AO} $
$4\overrightarrow {AO} $
$6\overrightarrow {AO} $
दो सदिशों $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ का परिणामी सदिश $\mathop A\limits^ \to $ के लम्बवत् है तथा इसका परिमाण सदिश $\mathop B\limits^ \to $ के परिमाण का आधा है। $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण ....... $^o$ होगा
यदि सदिशों $P, Q$ तथा $R$ के परिमाण क्रमश: $5, 12$ तथा $13$ इकाई हैं तथा $\mathop P\limits^ \to + \mathop Q\limits^ \to = \mathop R\limits^ \to $ है तो $Q$ तथा $R$ के बीच कोण है
सदिशों $\mathop A\limits^ \to ,\,\mathop B\limits^ \to $ तथा $\mathop C\limits^ \to $के परिमाण क्रमश: $3, 4$ तथा $5$ इकाई हैं। यदि $\mathop A\limits^ \to + \mathop B\limits^ \to = \mathop C\limits^ \to $, तब सदिश $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण होगा
दो सदिशों $\overrightarrow{ X }$ और $\overrightarrow{ Y }$ के परिमाण समान हैं। $(\overrightarrow{ X }-\overrightarrow{ Y })$ का परिमाण $(\overrightarrow{ X }+\overrightarrow{ Y })$ के परिमाण का $n$ गुना है। $\overrightarrow{ X }$ और $\overrightarrow{ Y }$ के बीच के कोण का मान है।
$5\, N$ तथा $10\, N$ का परिणामी बल ........ $N$ नहीं हो सकता है