निम्न चित्र में एक आवेशित चालक को एक कुचालक आधार पर रखा गया है। यदि $P$ पर आवेश घनत्व $\sigma $ विभव $V$ तथा विद्युत क्षेत्र की तीव्रता $E$ है तो इन राशियों के $Q$ पर मान होंगे
$> \sigma\,\,\,\,\,> V\,\,\,\,\,> E$
$> \sigma\,\,\,\, V\,\,\,\, > E$
$< \sigma\,\,\,\, V\,\,\,\, E$
$< \sigma\,\,\,\, V\,\,\,\, < E$
बिन्दु $P$ पर रखे बिन्दु आवेश के कारण उत्पन विद्युत क्षेत्र में एक खोखला गोलीय चालक चित्रानुसार रखा गया है। यदि ${V_A},{V_B},$ तथा ${V_C}$ क्रमश: बिन्दुओं $A,B$ व $C$ पर विभव हो तो
चार धात्विक चालकों की निम्न आकृतियाँ हैं
$1.$ गोला $2.$ बेलन
$3.$ नाशपाती आकार $3.$ तड़ित चालक
यदि इन्हें एक कुचालक आधार पर रखकर आवेशित किया जाये तो किस पर लम्बे समय तक आवेश रहेगा
$10\, cm$ त्रिज्या वाले एक चालक गोले को $10\,\mu \,C$ आवेश दिया गया है। $20\, cm$ त्रिज्या वाले अनावेशित दूसरे गोले को इससे स्पर्श कराते हैं। कुछ समय पश्चात् यदि गोलों को अलग-अलग कर दिया जाये तब गोलों पर पृष्ठ आवेश घनत्वों का अनुपात होगा
एकसमान पृष्ठ आवेश घनत्व $\sigma $ वाले चालक पृष्ठ के निकट वैद्युत क्षेत्र
एक समान रूप से आवेशित $5\,mm$ और $10\,mm$ त्रिज्याओं वाले दो गोलीय चालक $A$ और $B$, एक-दूसरे से $2\,cm$ की दूरी पर रखें हैं। यदि दोनों गोलीय पिण्डों को एक चालक तार से जाड़ दिया जाता है, तो साम्यावस्था में गोलीय पिण्ड $A$ और $B$ के पृष्ठों पर उपस्थित विद्युत क्षेत्रों के परिमाणों का अनुपात होगा: