Fill in the blanks in following table :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.5$ | $0.35$ | ......... | $0.7$ |
Here, $P ( A )=0.5$, $P ( B )=0.35$, $P (A \cup B)=0.7$
We know that $P (A \cup B)= P ( A )+ P ( B )- P (A \cap B)$
$\therefore 0.7=0.5+0.35- P (A \cap B)$
$\Rightarrow P (A \cap B)=0.5+0.35-0.7$
$\Rightarrow P (A \cap B)=0.15$
If $P(B) = \frac{3}{4}$, $P(A \cap B \cap \bar C) = \frac{1}{3}{\rm{ }}$ and $P(\bar A \cap B \cap \bar C) = \frac{1}{3},$ then $P(B \cap C)$ is
If two events $A$ and $B$ are such that $P\,(A + B) = \frac{5}{6},$ $P\,(AB) = \frac{1}{3}\,$ and $P\,(\bar A) = \frac{1}{2},$ then the events $A$ and $B$ are
For two given events $A$ and $B$, $P\,(A \cap B) = $
Let $A$ and $B$ are two independent events. The probability that both $A$ and $B$ occur together is $1/6$ and the probability that neither of them occurs is $1/3$. The probability of occurrence of $A$ is
If $A$ and $B$ are two events such that $P\left( {A \cup B} \right) = P\left( {A \cap B} \right)$, then the incorrect statement amongst the following statements is