Fill in the blanks in following table :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.5$ | $0.35$ | ......... | $0.7$ |
Here, $P ( A )=0.5$, $P ( B )=0.35$, $P (A \cup B)=0.7$
We know that $P (A \cup B)= P ( A )+ P ( B )- P (A \cap B)$
$\therefore 0.7=0.5+0.35- P (A \cap B)$
$\Rightarrow P (A \cap B)=0.5+0.35-0.7$
$\Rightarrow P (A \cap B)=0.15$
A party of $23$ persons take their seats at a round table. The odds against two persons sitting together are
The probabilities of occurrence of two events are respectively $0.21$ and $0.49$. The probability that both occurs simultaneously is $0.16$. Then the probability that none of the two occurs is
Three coins are tossed simultaneously. Consider the event $E$ ' three heads or three tails', $\mathrm{F}$ 'at least two heads' and $\mathrm{G}$ ' at most two heads '. Of the pairs $(E,F)$, $(E,G)$ and $(F,G)$, which are independent? which are dependent ?
Two persons $A$ and $B$ throw a (fair)die (six-faced cube with faces numbered from $1$ to $6$ ) alternately, starting with $A$. The first person to get an outcome different from the previous one by the opponent wins. The probability that $B$ wins is
If the odds in favour of an event be $3 : 5$, then the probability of non-occurrence of the event is