निम्नलिखित सारणी में खाली स्थान भरिए
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.5$ | $0.35$ | ......... | $0.7$ |
Here, $P ( A )=0.5$, $P ( B )=0.35$, $P (A \cup B)=0.7$
We know that $P (A \cup B)= P ( A )+ P ( B )- P (A \cap B)$
$\therefore 0.7=0.5+0.35- P (A \cap B)$
$\Rightarrow P (A \cap B)=0.5+0.35-0.7$
$\Rightarrow P (A \cap B)=0.15$
तीन बक्सों, जिनमें से एक में $3$ सफेद और $1$ काली, दूसरे में $2$ सफेद और $2$ काली ओर तीसरे में $1$ सफेद और $3$ काली गेंदें रखी हैं, प्रत्येक से एक गेंद यादृच्छिक तरीके से निकाली जाती है। $2$ सफेद और $1$ काली गेंदों को निकाले जाने की प्रायिकता होगी
$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ या $B$ ) का मान ज्ञात कीजिए।
$52$ ताश की गड्डी में से एक पत्ता चुना जाता है, इसके बादशाह या हुकुम का पत्ता होने की प्रायिकता है
यदि एक घटना के प्रतिकूल संयोगानुपात $2 : 3$ हो, तो उसके घटने की प्रायिकता है
यदि $A$ व $B$ कोई दो घटनाएँ हैं, तो $P(A \cup B) = $