One card is drawn randomly from a pack of $52$ cards, then the probability that it is a king or spade is

  • A

    $\frac{1}{{26}}$

  • B

    $\frac{3}{{26}}$

  • C

    $\frac{4}{{13}}$

  • D

    $\frac{3}{{13}}$

Similar Questions

In a class of $125$ students $70$ passed in Mathematics, $55$ in Statistics and $30$ in both. The probability that a student selected at random from the class has passed in only one subject is

If $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ and the events $A$ and $B$ are independent, then $x =$

A die is loaded in such a way that each odd number is twice as likely to occur as each even number. If $E$ is the event that a number greater than or equal to $4$ occurs on a single toss of the die then $P(E)$ is equal to

One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $\mathrm{E}$ and $\mathrm{F}$ independent ?

$E:$ 'the card drawn is a spade'

$F:$ 'the card drawn is an ace'

If $A$ and $B$ are events such that $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ then $P(\bar A \cap B)$ is

  • [AIEEE 2002]