Find a positive value of $m$ for which the coefficient of $x^{2}$ in the expansion $(1+x)^{m}$ is $6$
It is known that $(r+1)^{th}$ term, $\left(T_{r+1}\right),$ in the binomial expansion of $(a+b)^{n}$ is given by
${T_{r + 1}} = {\,^n}{C_r}{a^{n - r}}{b^r}$
Assuming that $x^{2}$ occurs in the $(r+1)^{\text {th }}$ term of the expansion of $(1+x)^{m}$, we obtain
${T_{r + 1}} = {\,^m}{C_r}{(1)^{m - r}}{(x)^r} = {\,^m}{C_r}{(x)^r}$
Comparing the indices of $x$ in $x^{2}$ and in $T_{r+1},$ we obtain $r=2$
Therefore, the coefficient of $x^{2}$ is $^{m} C_{2}$
It is given that the coefficient of $x^{2}$ in the expansion $(1+x)^{m}$ is $6$
$\therefore {\,^m}{C_2} = 6$
$\Rightarrow \frac{m !}{2 !(m-2) !}=6$
$\Rightarrow \frac{m(m-1)(m-2) !}{2 \times(m-2) !}=6$
$\Rightarrow m(m-1)=12$
$\Rightarrow m^{2}-m-12=0$
$\Rightarrow m^{2}-4 m+3 m-12=0$
$\Rightarrow m(m-4)+3(m-4)=0$
$\Rightarrow(m-4)(m+3)=0$
$\Rightarrow(m-4)=0$ or $(m+3)=0$
$\Rightarrow m=4$ or $m=-3$
Thus, the positive value of $m$, for which the coefficient of $x^{2}$ in the expansion $(1+x)^{m}$ is $6.$ is $4$
For $\mathrm{r}=0,1, \ldots, 10$, let $\mathrm{A}_{\mathrm{r}}, \mathrm{B}_{\mathrm{r}}$ and $\mathrm{C}_{\mathrm{r}}$ denote, respectively, the coefficient of $\mathrm{x}^{\mathrm{r}}$ in the expansions of $(1+\mathrm{x})^{10}$, $(1+\mathrm{x})^{20}$ and $(1+\mathrm{x})^{30}$. Then $\sum_{r=1}^{10} A_r\left(B_{10} B_r-C_{10} A_r\right)$ is equal to
Let $\mathrm{m}$ and $\mathrm{n}$ be the coefficients of seventh and thirteenth terms respectively in the expansion of $\left(\frac{1}{3} \mathrm{x}^{\frac{1}{3}}+\frac{1}{2 \mathrm{x}^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}$ is :
The number of integral terms in the expansion of ${\left( {\sqrt 3 + \sqrt[8]{5}} \right)^{256}}$ is
If the coefficient of the second, third and fourth terms in the expansion of ${(1 + x)^n}$ are in $A.P.$, then $n$ is equal to
The coefficient of $x^4$ in ${\left[ {\frac{x}{2}\,\, - \,\,\frac{3}{{{x^2}}}} \right]^{10}}$ is :