- Home
- Standard 11
- Mathematics
If the coefficients of $x^{-2}$ and $x^{-4}$ in the expansion of ${\left( {{x^{\frac{1}{3}}} + \frac{1}{{2{x^{\frac{1}{3}}}}}} \right)^{18}}\,,\,\left( {x > 0} \right),$ are $m$ and $n$ respectively, then $\frac{m}{n}$ is equal to
$27$
$182$
$\frac{5}{4}$
$\frac{4}{5}$
Solution
$T_{r+1}=18 C_{r}\left(x^{\frac{1}{3}}\right)^{18-r}\left(\frac{1}{2 x^{\frac{1}{3}}}\right)^{r}$
$=^{18} C_{r} x^{6-\frac{2 r}{3}} \frac{1}{2^{r}}$
$\left\{ \begin{gathered}
6 – \frac{{2r}}{3} = – 2 \Rightarrow r = 12 \hfill \\
\& \,6 – \frac{{2r}}{3} = – 4 \Rightarrow r = 15 \hfill \\
\end{gathered} \right\}$
$\Rightarrow \quad \frac{\text { coefficient of } x^{-2}}{\text { coefficient of } x^{-4}}=\frac{^{18} C_{12} \frac{1}{2^{12}}}{^{18} C_{15} \frac{1}{2^{15}}}=182$