જો $(1+x)^{m}$ ના વિસ્તરણમાં $x^{2}$ નો સહગુણક $6$ હોય, તો $m$ નું ધન મૂલ્ય શોધો.
It is known that $(r+1)^{th}$ term, $\left(T_{r+1}\right),$ in the binomial expansion of $(a+b)^{n}$ is given by
${T_{r + 1}} = {\,^n}{C_r}{a^{n - r}}{b^r}$
Assuming that $x^{2}$ occurs in the $(r+1)^{\text {th }}$ term of the expansion of $(1+x)^{m}$, we obtain
${T_{r + 1}} = {\,^m}{C_r}{(1)^{m - r}}{(x)^r} = {\,^m}{C_r}{(x)^r}$
Comparing the indices of $x$ in $x^{2}$ and in $T_{r+1},$ we obtain $r=2$
Therefore, the coefficient of $x^{2}$ is $^{m} C_{2}$
It is given that the coefficient of $x^{2}$ in the expansion $(1+x)^{m}$ is $6$
$\therefore {\,^m}{C_2} = 6$
$\Rightarrow \frac{m !}{2 !(m-2) !}=6$
$\Rightarrow \frac{m(m-1)(m-2) !}{2 \times(m-2) !}=6$
$\Rightarrow m(m-1)=12$
$\Rightarrow m^{2}-m-12=0$
$\Rightarrow m^{2}-4 m+3 m-12=0$
$\Rightarrow m(m-4)+3(m-4)=0$
$\Rightarrow(m-4)(m+3)=0$
$\Rightarrow(m-4)=0$ or $(m+3)=0$
$\Rightarrow m=4$ or $m=-3$
Thus, the positive value of $m$, for which the coefficient of $x^{2}$ in the expansion $(1+x)^{m}$ is $6.$ is $4$
જો $\left( ax ^2+\frac{1}{2 bx }\right)^{11}$ ના વિસ્તરણમાં $x^7$ નો સહગુણક અને $\left(a x-\frac{1}{3 b x^2}\right)^{11}$ ના વિસ્તરણમાં $x ^{-7}$ નો સહગુણક સમાન હોય તો . . ..
જો ${\left( {\sqrt[3]{{\frac{a}{{\sqrt b }}}} + \sqrt {\frac{b}{{\sqrt[3]{a}}}} } \right)^{21}}$ ના વિસ્તરણમાં ${(r + 1)^{th}}$ ના પદમાં $a$ અને $b$ ની ઘાતાંક સમાન હોય , તો $r$ મેળવો.
$\left(2 x^2+\frac{1}{2 x}\right)^{11}$ ના વિસ્તરણમાં $x^{10}$ અને $x^7$ ના સહગુણકોનો નિરપેક્ષ તફાવત $........$ છે.
$(1+ x)(1- x)^{10} (1+ x + x^2 )^9$ ના વિસ્તરણમાં $x^{18}$ નો સહગુણક મેળવો.
${\left( {{3^{\frac{1}{8}}} + {5^{\frac{1}{3}}}} \right)^{400}}$ ના વિસ્તરણમાં સંમેય પદોની સંખ્યા મેળવો