Find area of the triangle with vertices at the point given in each of the following: $(1,0),(6,0),(4,3)$
$\frac{11}{2}$ square units
$\frac{17}{2}$ square units
$\frac{15}{2}$ square units
$\frac{19}{2}$ square units
If $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha - b}\\b&c&{b\alpha - c}\\2&1&0\end{array}\,} \right| = 0$ and $\alpha \ne \frac{1}{2},$ then
If the system of equations, $x + 2y -3z = 1, (k + 3) z = 3, (2k + 1)x + z = 0$ is inconsistent, then the value of $k$ is :-
If the system of equations
$ 11 x+y+\lambda z=-5 $
$ 2 x+3 y+5 z=3 $
$ 8 x-19 y-39 z=\mu$
has infinitely many solutions, then $\lambda^4-\mu$ is equal to :
If $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2\end{array}\right|=\frac{9}{8}(103 x+81)$, then $\lambda$, $\frac{\lambda}{3}$ are the roots of the equation
If $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|,$ then $x$ is equal to