Find the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$
It is known $(r+1)^{\text {th }}$ term, $T_{r+1}$, in the binomial expansion of $(a+b)^{n}$ is given by ${T_{r + 1}} = {\,^n}{C_r}{a^{n - r}}{b^r}$
Thus, the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ is
${T_{13}} = {T_{11 + 1}} = {\,^{18}}{C_{12}}{(9x)^{18 - 12}}{\left( { - \frac{1}{{3\sqrt x }}} \right)^{12}}$
$=(-1)^{12} \frac{18 !}{1216 !}(9)^{6}(x)^{6}\left(\frac{1}{3}\right)^{12}\left(\frac{1}{\sqrt{x}}\right)^{12}$
$=\frac{18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 !}{121 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot x^{6}\left(\frac{1}{x^{6}}\right) \cdot 3^{12}\left(\frac{1}{3^{12}}\right)$ $\left[9^{6}=\left(3^{2}\right)^{6}=3^{12}\right]$
$=18564$
If the expansion of ${\left( {{y^2} + \frac{c}{y}} \right)^5}$, the coefficient of $y$ will be
The sum of the coefficient of $x^{2 / 3}$ and $x^{-2 / 5}$ in the binomial expansion of $\left(x^{2 / 3}+\frac{1}{2} x^{-2 / 5}\right)^9$ is :
If the coefficients of $x^4, x^5$ and $x^6$ in the expansion of $(1+x)^n$ are in the arithmetic progression, then the maximum value of $n$ is :
If $7^{th}$ term from beginning in the binomial expansion ${\left( {\frac{3}{{{{\left( {84} \right)}^{\frac{1}{3}}}}} + \sqrt 3 \ln \,x} \right)^9},\,x > 0$ is equal to $729$ , then possible value of $x$ is
If the sum of the coefficients in the expansion of $(x - 2y + 3 z)^n,$ $n \in N$ is $128$ then the greatest coefficie nt in the exp ansion of $(1 + x)^n$ is