निम्नलिखित के प्रसार में व्यापक पद लिखिए
$\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ के प्रसार में $13$ वाँ पद ज्ञात कीजिए।
It is known $(r+1)^{\text {th }}$ term, $T_{r+1}$, in the binomial expansion of $(a+b)^{n}$ is given by ${T_{r + 1}} = {\,^n}{C_r}{a^{n - r}}{b^r}$
Thus, the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ is
${T_{13}} = {T_{11 + 1}} = {\,^{18}}{C_{12}}{(9x)^{18 - 12}}{\left( { - \frac{1}{{3\sqrt x }}} \right)^{12}}$
$=(-1)^{12} \frac{18 !}{1216 !}(9)^{6}(x)^{6}\left(\frac{1}{3}\right)^{12}\left(\frac{1}{\sqrt{x}}\right)^{12}$
$=\frac{18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 !}{121 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot x^{6}\left(\frac{1}{x^{6}}\right) \cdot 3^{12}\left(\frac{1}{3^{12}}\right)$ $\left[9^{6}=\left(3^{2}\right)^{6}=3^{12}\right]$
$=18564$
${\left( {x + \frac{1}{{{x^2}}}} \right)^{2n}}$ के विस्तार में ${x^m}$ का गुणांक होगा
यदि $\left( x \sin \alpha+ a \frac{\cos \alpha}{ x }\right)^{10}$ के प्रसार में ' $x$ ' से स्वतंत्र पद का अधिकतम मान $\frac{10 \text { ! }}{(5 !)^{2}}$ है, तो ' $a$ ' बराबर है
${\left( {x - \frac{1}{{2x}}} \right)^8}$ के विस्तार में ${x^2}$ का गुणांक होगा
$(0.99)^{5}$ के प्रसार के पहले तीन पदों का प्रयोग करते हुए इसका निकटतम मान ज्ञात कीजिए।
यदि ${(1 + x)^n}$ के विस्तार में $p$ वें, $(p + 1)$ वें तथा $(p + 2)$ वें पदों के गुणांक समांतर श्रेणी में हों, तो