$\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$ ના વિસ્તરણનું $13$ મું પદ શોધો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known $(r+1)^{\text {th }}$ term, $T_{r+1}$, in the binomial expansion of $(a+b)^{n}$ is given by ${T_{r + 1}} = {\,^n}{C_r}{a^{n - r}}{b^r}$

Thus, the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ is

${T_{13}} = {T_{11 + 1}} = {\,^{18}}{C_{12}}{(9x)^{18 - 12}}{\left( { - \frac{1}{{3\sqrt x }}} \right)^{12}}$

$=(-1)^{12} \frac{18 !}{1216 !}(9)^{6}(x)^{6}\left(\frac{1}{3}\right)^{12}\left(\frac{1}{\sqrt{x}}\right)^{12}$

$=\frac{18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 !}{121 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot x^{6}\left(\frac{1}{x^{6}}\right) \cdot 3^{12}\left(\frac{1}{3^{12}}\right)$            $\left[9^{6}=\left(3^{2}\right)^{6}=3^{12}\right]$

$=18564$

Similar Questions

જો ધન પ્રાકૃતિક સંખ્યા $r > 1,n > 2$ માટે ${(1 + x)^{2n}}$ ના દ્રીપદી વિતરણમાં $x$ ની ઘાતાંક $(3r)^{th}$ અને ${(r + 2)^{th}}$ ના સહગુણક સમાન હોય તો . . . .

  • [IIT 1983]

${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ ના વિસ્તરણમાં $\frac{1}{x}$ નો સહગુણક મેળવો.

$(1 + x)^2 (1 + x^2)^3 ( 1 + x^3)^4$ ના વિસ્તરણમાં $x^{10}$ નો સહગુણક મેળવો.

  • [JEE MAIN 2018]

જો ${\left( {x + 1} \right)^n}$ ના વિસ્તરણમાં $x$ ની ઘાતના કોઈ પણ ત્રણ ક્રમિક પદોનો ગુણોત્તર $2 : 15 : 70$ હોય તો ત્રણેય પદોના સહગુણોકની સરેરાસ મેળવો. 

  • [JEE MAIN 2019]

${\left( {x - \frac{3}{{{x^2}}}} \right)^9}$ ના વિસ્તરણમાં અચળપદ મેળવો.