Find the cocfficient of $x^{5}$ in $(x+3)^{8}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right),$ in the binomial expansion of $(a+b)^{n}$ is given by

${T_{r + 1}} = {\,^n}{C_r}{a^{n - r}}{b^r}$

Assuming that $x^{5}$ occurs in the $(r+1)^{t h}$ term of the expansion $(x+3)^{8},$ we obtain

${T_{r + 1}} = {\,^8}{C_r}{(x)^{8 - r}}{(3)^r}$

Comparing the indices of $x$ in $x^{5}$ in $T_{r+1},$

We obtain $r=3$

Thus, the coefficient of $x^{5}$ is ${\,^8}{C_3}{(3)^3} = \frac{{8!}}{{3!5!}} \times {3^3} = \frac{{8 \cdot 7 \cdot 6 \cdot 5!}}{{3 \cdot 2 \cdot 5!}} \cdot {3^3} = 1512$

Similar Questions

Let the coefficients of third, fourth and fifth terms in the expansion of $\left(x+\frac{a}{x^{2}}\right)^{n}, x \neq 0,$ be in the ratio $12: 8: 3 .$ Then the term independent of $x$ in the expansion, is equal to ...... .

  • [JEE MAIN 2021]

If the co-efficient of $x^9$ in $\left(\alpha x^3+\frac{1}{\beta x}\right)^{11}$ and the co-efficient of $x^{-9}$ in $\left(\alpha x-\frac{1}{\beta x^3}\right)^{11}$ are equal, then $(\alpha \beta)^2$ is equal to $.............$.

  • [JEE MAIN 2023]

Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$, in the increasing powers of $\frac{1}{\sqrt[4]{3}}$ be $\sqrt[4]{6}: 1$. If the sixth term from the beginning is $\frac{\alpha}{\sqrt[4]{3}}$, then $\alpha$ is equal to$.......$

  • [JEE MAIN 2022]

Find the value of $\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$

Middle term in the expansion of ${(1 + 3x + 3{x^2} + {x^3})^6}$ is