7.Binomial Theorem
normal

If the coefficient of $x ^{10}$ in the binomial expansion of $\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}$ is $5^{ k } l$, where $l, k \in N$ and $l$ is coprime to $5$ , then $k$ is equal to

A

$5$

B

$6$

C

$7$

D

$8$

(JEE MAIN-2022)

Solution

$\left(\frac{\sqrt{x}}{5^{1 / 4}}+\frac{\sqrt{5}}{x^{1 / 3}}\right)^{60}$

$T_{r+1}={ }^{60} C_{r}\left(\frac{x^{1 / 2}}{5^{1 / 4}}\right)^{60-r}\left(\frac{5^{1 / 2}}{x^{1 / 3}}\right) r$

$={ }^{60} C_{r} 5 \frac{3 r-60}{4} x \frac{180-5 r}{6}$

$\frac{180-5 r}{6}=10 \Rightarrow r=24$

Coeff. of $x^{10}={ }^{60} C_{24} 5^{3}=\frac{\mid 60}{|24| 36} 5^{3}$

Powers of $5$ in $={ }^{60} C_{24} \cdot 5^{3}=\frac{5^{14}}{5^{4} \times 5^{8}} \times 5^{3}=5^{5}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.