આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ પ્રધાન અક્ષનાં અંત્યબિંદુઓ $(0,\, \pm \sqrt{5})$, ગૌણ અક્ષનાં અંત્યબિંદુઓ $(±1,\,0)$
Ends of major axis $(0, \,\pm \sqrt{5}),$ ends of minor axis $(±1,\,0)$
Here, the major axis is along the $y-$ axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ where a is the semimajor axis.
Accordingly, $a =\sqrt{5}$ and $b=1$
Thus, the equation of the ellipse is $\frac{x^{2}}{1^{2}}+\frac{y^{2}}{(\sqrt{5})^{2}}=1$ or $\frac{x^{2}}{1}+\frac{y^{2}}{5}=1$
ઉપવલય $2x^2 + 5y^2 = 20$ ની સાપેક્ષે બિંદુ $(4, -3)$ નું સ્થાન :
એક ઉપવલય નાભીઓ $(0, 2)$ અને $(0, -2)$ હોય તથા ગૌણઅક્ષની લંબાઈ $4$ હોય તો નીચેનામાંથી ક્યું બિંદુ ઉપવલય પર આવેલ છે?
જો વક્રો $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ અને $x^{2}+y^{2}=12$ ના સામાન્ય સ્પર્શકની ઢાળ $m$ હોય, તો $12\,m^{2}=\dots\dots\dots$
ઉપવલયની અર્ધ ગૈાણ અક્ષ $OB$ અને $F$ અને $F'$ તેની નાભિઓ છે.જો $FBF'$ એ કાટકોણ હોય તો તેની ઉત્કેન્દ્રતા મેળવો.
જો $E$ એ ઉપવલય $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ અને $C$ એ વર્તૂળ ${x^2} + {y^2} = 9$ દર્શાવે છે. જો બિંદુઓ $P$ અને $Q$ અનુક્રમે $(1, 2)$ અને $(2, 1)$ હેાય તો