प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष के अंत्य बिंदु $(0, \pm \sqrt{5}),$ लघु अक्ष के अंत्य बिंदु $(±1,0)$
Ends of major axis $(0, \,\pm \sqrt{5}),$ ends of minor axis $(±1,\,0)$
Here, the major axis is along the $y-$ axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ where a is the semimajor axis.
Accordingly, $a =\sqrt{5}$ and $b=1$
Thus, the equation of the ellipse is $\frac{x^{2}}{1^{2}}+\frac{y^{2}}{(\sqrt{5})^{2}}=1$ or $\frac{x^{2}}{1}+\frac{y^{2}}{5}=1$
माना कि $E_1$ और $E_2$ दो दीर्घवृत हैं जिनके केन्द्र मूलबीन्दु हैं। $E_1$ और $E_2$ की दीर्घ अक्षायें क्रमशः $x$-अक्ष और $y$-अक्ष पर स्थित हैं। माना कि $S: x^2+(y-1)^2=2$ एक वृत्त है। सरल रेखा $x+y=3$, वक्रों $S, E_1$ और $E_2$ को क्रमशः $P, Q$ और $R$ पर स्पर्श करती है। माना कि $P Q=P R=\frac{2 \sqrt{2}}{3}$ है। यदि $e_1$ और $e_2$ क्रमशः $E_1$ और $E_2$ की उत्केन्द्रता (eccentricities) हैं, तब सही कथन है
$(A)$ $e_1^2+e_2^2=\frac{43}{40}$
$(B)$ $e_1 e_2=\frac{\sqrt{7}}{2 \sqrt{10}}$
$(C)$ $\left|e_1^2-e_2^2\right|=\frac{5}{8}$
$(D)$ $e_1 e_2=\frac{\sqrt{3}}{4}$
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$4 x ^{2}+9 y ^{2}=36$
दीर्घवृत्त के किसी बिन्दु पर नाभीय दूरियों का योग क्या होगा, जबकि दीर्घवृत्त के दीर्घाक्ष व लघुअक्ष की लम्बाईयाँ क्रमश: $2a$ व $2b$ हैं
रेखा $y = mx + c$ दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ का अभिलम्ब है, यदि $c = $
एक दीर्घवृत्त बिन्दु $(-3, 1)$ से गुजरता है तथा उसकी उत्केन्द्रता $\sqrt {\frac{2}{5}} $ है। दीर्घवृत्त का समीकरण होगा