આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ  પ્રધાન અક્ષની લંબાઈ $16$, નાભિઓ $(0,\,±6)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Length of minor axis $=16 ;$ foci $=(0,\,\pm 6)$

since the foci are on the $y-$ axis, the major axis is along the $y-$ axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ where a is the semimajor axis.

Accordingly, $2 b=16 \Rightarrow b=8$ and $c=6$

It is known that $a^{2}=b^{2}+c^{2}$

$\therefore a^{2}=8^{2}+6^{2}=64+36=100$

$\Rightarrow a=\sqrt{100}=10$

Thus, the equation of the ellipse is $\frac{x^{2}}{8^{2}}+\frac{y^{2}}{10^{2}}=1$ or $\frac{x^{2}}{64}+\frac{y^{2}}{100}=1$

Similar Questions

અહી $\theta$ એ ઉપવલય $\frac{x^{2}}{9}+\frac{y^{2}}{1}=1$ અને વર્તુળ $x^{2}+y^{2}=3$ નાં પ્રથમ ચરણનાં છેદબિંદુ આગળનાં સ્પર્શકો વચ્ચેનો ખૂણો છે તો  $\tan \theta$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો બે ભિનન શાંકવો $x^2+y^2=4 b$ અને $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ ના છેદ બિંદુઓ, વક્ર $y^2=3 x^2$ પર આવેલા હોય, તો આ છેદ બિંદુઓ દ્વારા રચાયેલ લંબચોરસના ક્ષેત્રફળના $3 \sqrt{3}$ ઘણા........................... થાય.

  • [JEE MAIN 2024]

પ્રથમ ચરણમાં રેખા $y=m x$ અને ઉપવલય $2 x^{2}+y^{2}=1$ બિંદુ $\mathrm{P}$ આગળ છેદે છે . જો બિંદુ $P$ આગળનો અભિલંભ અક્ષોને $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ અને $(0, \beta)$ આગળ છેદે છે તો $\beta$ મેળવો.

  • [JEE MAIN 2020]

બિંદુ $(-3,-5)$ અને ઉપવલય $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ પરના બિંદુને જોડતા રેખાખંડના મધ્યબિંદુના બિંદુપથનું સમીકરણ મેળવો.

  • [JEE MAIN 2021]

વર્તૂળ $(x - 1)^2 + y^2 = 1$ ના વ્યાસને ગૌણ અક્ષની અર્ધલંબાઈ તરીકે અને વર્તૂળ $x^2 + (y - 2)^2 = 4$ ના વ્યાસને પ્રધાન અક્ષની અર્ધ લંબાઈ તરીકે લઈને એક ઉપવલય દોર્યો. જો ઉપવલયનું કેન્દ્ર ઉગમબિંદુ આગળ હોય અને તેની અક્ષો યામાક્ષો હોય, તો ઉપવલયનું સમીકરણ મેળવો.