કોઈ $\theta \in\left(0, \frac{\pi}{2}\right)$ માટે, જો અતિવલય $x^{2}-y^{2} \sec ^{2} \theta=10$ ની ઉત્કેન્દ્ર્તા એ ઉપવલય $x^{2} \sec ^{2} \theta+y^{2}=5$ ની ઉત્કેન્દ્રતા કરતાં $\sqrt{5}$ ગણી હોય તો ઉપવલયની નાભીલંબની લંબાઇ શોધો.

  • [JEE MAIN 2020]
  • A

    $\sqrt{30}$

  • B

    $\frac{4 \sqrt{5}}{3}$

  • C

    $2 \sqrt{6}$

  • D

    $\frac{2 \sqrt{5}}{3}$

Similar Questions

ધારોકે વક્ર $9 x^2+16 y^2=144$ નો સ્પર્શક યામાક્ષો ને બિંદુ ઓ $A$ અને $B$ માં છેદે છે. તો, રેખાખંડ $AB$ની ન્યૂનતમ લંબાઈ $.............$ છે.

  • [JEE MAIN 2023]

ઉપવલયો $E_k: k x^2+k^2 y^2=1, k=1,2, \ldots, 20$ ધ્યાને લો. જેનું એક અંત્યબિંદુ પ્રધાન અક્ષ પર અને બીજું ગૌણ અક્ષ પર હોય તેવી, ઉપવલય $E_k$ ની યાર જીવાઆને સ્પર્શતું વર્તુળ ધારો કે $C_K$ છે.જો $r_k$ એ વર્તુળ $C_k$ ની ત્રિજ્યા હોય, તો $\sum \limits_{k=1}^{20} \frac{1}{r_k^2}$ નું મૂલ્ય $........$ છે.

  • [JEE MAIN 2023]

વર્તુળની ત્રિજ્યા મેળવો કે જેનું કેન્દ્ર  $(0, 3)$ હોય અને જે ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ ની નાભીમાંથી પસાર થાય છે .

  • [IIT 1995]

જો $y\,\, = \,\,mx\, + \,\,c$      એ ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$ નો સ્પર્શક હોય , તો $c$ નું મૂલ્ય ......

ઉપવલય $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ પરનું બિંદુ $P$ એ દ્રીતીય ચરણમાં એવી રીતે આપેલ છે કે જેથી બિંદુ  $\mathrm{P}$  આગળનો ઉપવલયનો સ્પર્શક એ રેખા $x+2 y=0$ ને લંબ થાય છે. અહી $S$ અને $\mathrm{S}^{\prime}$ એ ઉપવલયની નાભીઓ છે અને $\mathrm{e}$ એ ઉત્કેન્દ્રિતા છે. જો $\mathrm{A}$ એ ત્રિકોણ $SPS'$ નું ક્ષેત્રફળ છે તો $\left(5-\mathrm{e}^{2}\right) . \mathrm{A}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]