Gujarati
10-2. Parabola, Ellipse, Hyperbola
easy

The point $(4, -3)$ with respect to the ellipse $4{x^2} + 5{y^2} = 1$

A

Lies on the curve

B

Is inside the curve

C

Is outside the curve

D

Is focus of the curve

Solution

(c) Using the condition the point $({x_1},\,{y_1})$ lies

$(i)$ On the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} – 1 = 0$ if

$\frac{{x_1^2}}{{{a^2}}} + \frac{{y_1^2}}{{{b^2}}} – 1 = 0$

$(ii)$ Outside the ellipse if $\frac{{x_1^2}}{{{a^2}}} + \frac{{y_1^2}}{{{b^2}}} – 1 > 0$

$(iii)$ Inside the ellipse if $\frac{{x_1^2}}{{{a^2}}} + \frac{{y_1^2}}{{{b^2}}} – 1 < 0$

Given ellipse is $\frac{{{x^2}}}{{1/4}} + \frac{{{y^2}}}{{1/5}} = 1$

 $\frac{{16}}{{1/4}} + \frac{9}{{1/5}} – 1 = 64 + 45 – 1 > 0$

Point $(4, -3)$ lies outside the ellipse.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.