Find the general solution of the equation $\sec ^{2} 2 x=1-\tan 2 x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\sec ^{2} 2 x=1-\tan 2 x$

$\Rightarrow 1+\tan ^{2} 2 x=1-\tan 2 x$

$\Rightarrow \tan ^{2} 2 x+\tan 2 x=0$

$\Rightarrow \tan 2 x(\tan 2 x+1)=0$

$\Rightarrow \tan 2 x=0 \quad$ or $\quad \tan 2 x+1=0$

Now, $\tan 2 x=0$

$\Rightarrow \tan 2 x=\tan 0$

$\Rightarrow 2 x=n \pi+0,$ where $n \in Z$

$\Rightarrow x=\frac{n \pi}{2},$ where $n \in Z$

$\tan 2 x+1=0$

$\Rightarrow \tan 2 x=-1=-\tan \frac{\pi}{4}=\tan \left(\pi-\frac{\pi}{4}\right)=\tan \frac{3 \pi}{4}$

$\Rightarrow 2 x=n \pi+\frac{3 \pi}{4},$ where $n \in Z$

$\Rightarrow x=\frac{n \pi}{2}+\frac{3 \pi}{8},$ where $n \in Z$

Therefore, the general solution is $\frac{n \pi}{2}$ or $\frac{n \pi}{2}+\frac{3 \pi}{8}, n \in Z$

Similar Questions

Let $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}$.

Then $\sum_{\theta \in S } \sin ^2\left(\theta+\frac{\pi}{4}\right)$ is equal to

  • [JEE MAIN 2023]

The solution of the equation $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ is

Find the principal solutions of the equation $\tan x=-\frac{1}{\sqrt{3}}.$

The smallest positive root of the equation $tanx\,  -\,  x = 0$ lies on

The solution of equation ${\cos ^2}\theta + \sin \theta + 1 = 0$ lies in the interval

  • [IIT 1992]