Find the general solution of the equation $\sec ^{2} 2 x=1-\tan 2 x$
$\sec ^{2} 2 x=1-\tan 2 x$
$\Rightarrow 1+\tan ^{2} 2 x=1-\tan 2 x$
$\Rightarrow \tan ^{2} 2 x+\tan 2 x=0$
$\Rightarrow \tan 2 x(\tan 2 x+1)=0$
$\Rightarrow \tan 2 x=0 \quad$ or $\quad \tan 2 x+1=0$
Now, $\tan 2 x=0$
$\Rightarrow \tan 2 x=\tan 0$
$\Rightarrow 2 x=n \pi+0,$ where $n \in Z$
$\Rightarrow x=\frac{n \pi}{2},$ where $n \in Z$
$\tan 2 x+1=0$
$\Rightarrow \tan 2 x=-1=-\tan \frac{\pi}{4}=\tan \left(\pi-\frac{\pi}{4}\right)=\tan \frac{3 \pi}{4}$
$\Rightarrow 2 x=n \pi+\frac{3 \pi}{4},$ where $n \in Z$
$\Rightarrow x=\frac{n \pi}{2}+\frac{3 \pi}{8},$ where $n \in Z$
Therefore, the general solution is $\frac{n \pi}{2}$ or $\frac{n \pi}{2}+\frac{3 \pi}{8}, n \in Z$
For $x \in(0, \pi)$, the equation $\sin x+2 \sin 2 x-\sin 3 x=3$ has
The positive integer value of $n>3$ satisfying the equation $\frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)}$ is
If $\cos p\theta = \cos q\theta ,p \ne q$, then
General solution of the equation $\cot \theta - \tan \theta = 2$ is
The most general value of $\theta $ satisfying the equations $\tan \theta = - 1$ and $\cos \theta = \frac{1}{{\sqrt 2 }}$ is