If $\frac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }} = 3$, then the general value of $\theta $ is
$2n\pi \pm \frac{\pi }{6}$
$n\pi \pm \frac{\pi }{6}$
$2n\pi \pm \frac{\pi }{3}$
$n\pi \pm \frac{\pi }{3}$
$\alpha=\sin 36^{\circ}$ is a root of which of the following equation
Number of roots of the equation ${\cos ^2}x + \frac{{\sqrt 3 + 1}}{2}\sin x - \frac{{\sqrt 3 }}{4} - 1 = 0$ which lie in the interval $[-\pi,\pi ]$ is
If $\tan m\theta = \tan n\theta $, then the general value of $\theta $ will be in
Number of solutions of $\sqrt {\tan \theta } = 2\sin \theta ,\theta \in \left[ {0,2\pi } \right]$ is equal to
Let $f(x) = sinx + 2sin^2x + 3sin^3x + 4sin^4x+....\infty $ , then number of solution $(s)$ of equation $f(x) = 2$ in $x \in \left[ { - \pi ,\pi } \right] - \left\{ { \pm \frac{\pi }{2}} \right\}$ is