निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए

$\sec ^{2} 2 x=1-\tan 2 x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\sec ^{2} 2 x=1-\tan 2 x$

$\Rightarrow 1+\tan ^{2} 2 x=1-\tan 2 x$

$\Rightarrow \tan ^{2} 2 x+\tan 2 x=0$

$\Rightarrow \tan 2 x(\tan 2 x+1)=0$

$\Rightarrow \tan 2 x=0 \quad$ or $\quad \tan 2 x+1=0$

Now, $\tan 2 x=0$

$\Rightarrow \tan 2 x=\tan 0$

$\Rightarrow 2 x=n \pi+0,$ where $n \in Z$

$\Rightarrow x=\frac{n \pi}{2},$ where $n \in Z$

$\tan 2 x+1=0$

$\Rightarrow \tan 2 x=-1=-\tan \frac{\pi}{4}=\tan \left(\pi-\frac{\pi}{4}\right)=\tan \frac{3 \pi}{4}$

$\Rightarrow 2 x=n \pi+\frac{3 \pi}{4},$ where $n \in Z$

$\Rightarrow x=\frac{n \pi}{2}+\frac{3 \pi}{8},$ where $n \in Z$

Therefore, the general solution is $\frac{n \pi}{2}$ or $\frac{n \pi}{2}+\frac{3 \pi}{8}, n \in Z$

Similar Questions

यदि $n$ एक पूर्णांक है, तब  $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ का व्यापक हल है

यदि ${\sin ^2}\theta  = \frac{1}{4},$ तो $\theta $ का सर्वव्यापक मान है

यदि $\sin 2\theta  = \cos \theta ,\,\,0 < \theta  < \pi $, तो $\theta $ के सम्भव मान हैं

यदि $1 + \cot \theta  = {\rm{cosec}}\theta $, तो $\theta $ का व्यापक मान है

यदि $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$, तब $\sin \left( {\theta  + \frac{\pi }{4}} \right)$ का मान होगा