આપેલ સમીકરણના વ્યાપક ઉકેલ શોધો : $\sin x+\sin 3 x+\sin 5 x=0$
$\sin x+\sin 3 x+\sin 5 x=0$
$(\sin x+\sin 5 x)+\sin 3 x=0$
$\Rightarrow\left[2 \sin \left(\frac{x+5 x}{2}\right) \cos \left(\frac{x-5 x}{2}\right)\right]+\sin 3 x=0$ $\left[\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]$
$\Rightarrow 2 \sin 3 x \cos (-2 x)+\sin 3 x=0$
$\Rightarrow 2 \sin 3 x \cos 2 x+\sin 3 x=0$
$\Rightarrow \sin 3 x(2 \cos 2 x+1)=0$
$\Rightarrow \sin 3 x=0 \quad$ or $\quad 2 \cos 2 x+1=0$
Now, $\sin 3 x=0 \Rightarrow 3 x=n \pi,$ where $n \in Z$
i.e., $x=\frac{n \pi}{3},$ where $n \in Z$
$2 \cos 2 x+1=0$
$\Rightarrow \cos 2 x=\frac{-1}{2}=-\cos \frac{\pi}{3}=\cos \left(\pi-\frac{\pi}{3}\right)$
$\Rightarrow \cos 2 x=\cos \frac{2 \pi}{3}$
$\Rightarrow 2 x=2 n \pi \pm \frac{2 \pi}{3},$ where $n \in Z$
$\Rightarrow x=n \pi \pm \frac{\pi}{3},$ where $n \in Z$
Therefore, the general solution is $\frac{n \pi}{3}$ or $n \pi \pm \frac{\pi}{3}, n \in Z$
$4\, cos^2 \, \theta - 2 \sqrt 2 \, cos \,\theta - 1 = 0$ સમીકરણને સંતોષતી $0$ & $2\pi $ ની વચ્ચેની કિમત .............. છે
જો $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ તો $\cos \left( {\theta - \frac{\pi }{4}} \right) =$
સમીકરણ $2^x + x = 2^{sin \ x} + \sin x$ ના $[0,10\pi ]$ માં કુલ કેટલા ઉકેલો મળે ?
સમીકરણ $(\sqrt 3 - 1)\sin \theta + (\sqrt 3 + 1)\cos \theta = 2$ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ $2{\cos ^2}\left( {\frac{x}{2}} \right)\,{\sin ^2}x\, = \,{x^2}\, + \,\frac{1}{{{x^2}}},\,0\,\, \leqslant \,\,x\,\, \leqslant \,\,\frac{\pi }{2}\,\,$ ના ............... ઉકેલો મેળવો