જો $n$ એ પૂર્ણાક હોય તો સમીકરણ $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ નો વ્યાપક ઉકેલ મેળવો.
$x = 2n\pi - \frac{\pi }{{12}}$ અથવા $x = 2n\pi + \frac{{7\pi }}{{12}}$
$x = n\pi \pm \frac{\pi }{{12}}$
$x = 2n\pi + \frac{\pi }{{12}}$ અથવા $x = 2n\pi - \frac{{7\pi }}{{12}}$
$x = n\pi + \frac{\pi }{{12}}$ અથવા $x = n\pi - \frac{{7\pi }}{{12}}$
$2\,{\sin ^3}\,\alpha - 7\,{\sin ^2}\,\alpha + 7\,\sin \,\alpha = 2$ ના સમાધાન માટે $\alpha $ની કિંમત $[0, 2\pi]$ માં કેટલી મળે ?
સમીકરણ $sin^4x + cos^4x = sinx\, cosx$ ના $[0, 2\pi ]$ માં આવેલ કુલ ઉકેલોની સંખ્યા .... છેઃ
જો$\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$, કે જ્યાં $0 < \theta < {180^o}$, તો $\theta =$
જો $|cos\ x + sin\ x| + |cos\ x\ -\ sin\ x| = 2\ sin\ x$ ; $x \in [0,2 \pi ]$ થાય તો $x$ ની મહતમ પૂર્ણાક કિમત મેળવો.
જ્યારે $x \in\left[0, \frac{\pi}{2}\right]$ હોય ત્યારે સમીકરણ $\sqrt{3}\left(\cos ^{2} x\right)=(\sqrt{3}-1) \cos x+1,$ નાં ઉકેલોની સંખ્યા .......... છે.