Trigonometrical Equations
medium

જો $n$ એ પૂર્ણાક હોય તો સમીકરણ $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ નો વ્યાપક ઉકેલ મેળવો.

A

$x = 2n\pi - \frac{\pi }{{12}}$ અથવા $x = 2n\pi + \frac{{7\pi }}{{12}}$

B

$x = n\pi \pm \frac{\pi }{{12}}$

C

$x = 2n\pi + \frac{\pi }{{12}}$ અથવા $x = 2n\pi - \frac{{7\pi }}{{12}}$

D

$x = n\pi + \frac{\pi }{{12}}$ અથવા $x = n\pi - \frac{{7\pi }}{{12}}$

Solution

(c) Given equation is,$\cos x – \sin x = \frac{1}{{\sqrt 2 }}$

Dividing equation by $\sqrt 2 $, 

$\frac{1}{{\sqrt 2 }}\cos x – \frac{1}{{\sqrt 2 }}\sin x = \frac{1}{2}$

$\cos \left( {\frac{\pi }{4} + x} \right) = \cos \frac{\pi }{3}$.

Hence, $\frac{\pi }{4} + x = 2n\pi \pm \frac{\pi }{3}$

$x = 2n\pi + \frac{\pi }{3} – \frac{\pi }{4} = 2n\pi + \frac{\pi }{{12}}$

or $x = 2n\pi – \frac{\pi }{3} – \frac{\pi }{4} = 2n\pi – \frac{{7\pi }}{{12}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.