જો $f(x) = sinx + 2sin^2x + 3sin^3x + 4sin^4x+....\infty $ ,હોય તો સમીકરણ $f(x) = 2$ ના $x \in \left[ { - \pi ,\pi } \right] - \left\{ { \pm \frac{\pi }{2}} \right\}$ માં કેટલા ઉકેલો મળે?
$0$
$2$
$4$
$8$
સમીકરણ $4{\cos ^2}x + 6$${\sin ^2}x = 5$ નો ઉકેલ મેળવો.
જો $1 + \sin x + {\sin ^2}x + .....$ થી $\infty = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ તો . . .
અહી $S=\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^{2} \theta}+8^{2 \cos ^{2} \theta}=16\right\}$ હોય તો $n ( S )+\sum_{\theta \in S}\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$ ની કિમંત મેળવો.
જો $A + B + C = \pi$ & $sin\, \left( {A\,\, + \,\,\frac{C}{2}} \right) = k \,sin,\frac{C}{2}$ થાય તો $tan\, \frac{A}{2} \,tan \, \frac{B}{2}=$
સમીકરણ $secx = 1 + cosx + cos^2x + ........ \infty$ ના $x \in [-50 \pi, 50 \pi]$ માં કેટલા ઉકેલો મળે?