- Home
- Standard 11
- Mathematics
13.Statistics
hard
Find the mean and variance for the data
${x_i}$ | $92$ | $93$ | $97$ | $98$ | $102$ | $104$ | $109$ |
${f_i}$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
A
$29.09$
B
$29.09$
C
$29.09$
D
$29.09$
Solution
The data is obtained in tabular form as follows.
${x_i}$ | ${f_i}$ | ${f_i}{x_i}$ | ${{x_i} – \bar x}$ | ${\left( {{x_i} – \bar x} \right)^2}$ | ${f_i}{\left( {{x_i} – \bar x} \right)^2}$ |
$92$ | $3$ | $276$ | $-8$ | $64$ | $192$ |
$93$ | $2$ | $186$ | $-7$ | $49$ | $98$ |
$97$ | $3$ | $291$ | $-3$ | $9$ | $27$ |
$98$ | $2$ | $196$ | $-2$ | $4$ | $8$ |
$102$ | $6$ | $612$ | $2$ | $4$ | $24$ |
$104$ | $3$ | $312$ | $4$ | $16$ | $48$ |
$109$ | $3$ | $327$ | $9$ | $81$ | $243$ |
$22$ | $2200$ | $640$ |
Here, $N = 22,\sum\limits_{i = 1}^7 {{f_i}{x_i}} = 2200$
$\therefore \bar x = \frac{1}{n}\sum\limits_{i = 1}^7 {{f_i}{x_i}} = \frac{1}{{22}} \times 2200 = 100$
Variance $\left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} – \bar x} \right)}^2} = } \frac{1}{{22}} \times 640 = 29.09$
Standard 11
Mathematics
Similar Questions
Let $\mu$ be the mean and $\sigma$ be the standard deviation of the distribution
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
where $\sum f_i=62$. if $[x]$ denotes the greatest integer $\leq x$, then $\left[\mu^2+\sigma^2\right]$ is equal $………$.
If the variance of the following frequency distribution is $50$ then $x$ is equal to:
Class | $10-20$ | $20-30$ | $30-40$ |
Frequency | $2$ | $x$ | $2$ |