- Home
- Standard 11
- Mathematics
Find the mean and variance for the first $n$ natural numbers
$\frac{n^{2}-1}{12}$
$\frac{n^{2}-1}{12}$
$\frac{n^{2}-1}{12}$
$\frac{n^{2}-1}{12}$
Solution
The mean of first $n$ natural numbers is calculated as follows.
Mean $=\frac{\text { Sum of all observations }}{\text { Number of observations }}$
$\therefore$ Mean $=\frac{\frac{n(n+1)}{2}}{n}=\frac{n+1}{2}$
Varianvce $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} – \bar x} \right)}^2}} $
$ = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left[ {{x_i} – \left( {\frac{{n + 1}}{2}} \right)} \right]}^2}} $
$ = \frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 – \frac{1}{n}\sum\limits_{i = 1}^n {2\left( {\frac{{n + 1}}{n}} \right)} } {x_i} + \frac{1}{n}{\sum\limits_{i = 1}^n {\left( {\frac{{n + 1}}{2}} \right)} ^2}$
$=\frac{1}{n} \frac{n(n+1)(2 n+1)}{6}-\left(\frac{n+1}{n}\right)\left[\frac{n(n+1)}{2}\right]+\frac{(n+1)^{2}}{4 n} \times n$
$=\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{2}+\frac{(n+1)^{2}}{4}$
$=\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{4}$
$=(n+1)\left[\frac{4 n+2-3 n-3}{12}\right]$
$=\frac{(n+1)(n-1)}{12}$
$=\frac{n^{2}-1}{12}$
Similar Questions
For the frequency distribution :
Variate $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
Frequency $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
where $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ and
$\sum \limits_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be