Find the mean and variance for the first $n$ natural numbers
The mean of first $n$ natural numbers is calculated as follows.
Mean $=\frac{\text { Sum of all observations }}{\text { Number of observations }}$
$\therefore$ Mean $=\frac{\frac{n(n+1)}{2}}{n}=\frac{n+1}{2}$
Varianvce $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \bar x} \right)}^2}} $
$ = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left[ {{x_i} - \left( {\frac{{n + 1}}{2}} \right)} \right]}^2}} $
$ = \frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 - \frac{1}{n}\sum\limits_{i = 1}^n {2\left( {\frac{{n + 1}}{n}} \right)} } {x_i} + \frac{1}{n}{\sum\limits_{i = 1}^n {\left( {\frac{{n + 1}}{2}} \right)} ^2}$
$=\frac{1}{n} \frac{n(n+1)(2 n+1)}{6}-\left(\frac{n+1}{n}\right)\left[\frac{n(n+1)}{2}\right]+\frac{(n+1)^{2}}{4 n} \times n$
$=\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{2}+\frac{(n+1)^{2}}{4}$
$=\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{4}$
$=(n+1)\left[\frac{4 n+2-3 n-3}{12}\right]$
$=\frac{(n+1)(n-1)}{12}$
$=\frac{n^{2}-1}{12}$
Let $\mu$ be the mean and $\sigma$ be the standard deviation of the distribution
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
where $\sum f_i=62$. if $[x]$ denotes the greatest integer $\leq x$, then $\left[\mu^2+\sigma^2\right]$ is equal $.........$.
If the data $x_1, x_2, ...., x_{10}$ is such that the mean of first four of these is $11$, the mean of the remaining six is $16$ and the sum of squares of all of these is $2,000$; then the standard deviation of this data is
Mean of $5$ observations is $7.$ If four of these observations are $6, 7, 8, 10$ and one is missing then the variance of all the five observations is
What is the standard deviation of the following series
class |
0-10 |
10-20 |
20-30 |
30-40 |
Freq |
1 |
3 |
4 |
2 |