- Home
- Standard 11
- Mathematics
The mean and standard deviation of $20$ observations are found to be $10$ and $2$, respectively. On respectively, it was found that an observation by mistake was taken $8$ instead of $12$ . The correct standard deviation is
$\sqrt{3.86}$
$ 1.8$
$\sqrt{3.96}$
$1.94$
Solution
Mean $(\bar{x})=10$
$ \Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}}{20}=10 $
$ \Sigma \mathrm{x}_{\mathrm{i}}=10 \times 20=200$
If $8$ is replaced by $12$ , then $\Sigma x_1=200-8+12=204$
$\therefore$ Correct mean $(\overline{\mathrm{x}})=\frac{\Sigma \mathrm{x}_{\mathrm{i}}}{20}$
$=\frac{204}{20}=10.2$
$ \because$ Standard deviation $=2$
$ \therefore$ Variance $=( S.D.)^2=2^2=4 $
$ \Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}^2}{20}-\left(\frac{\Sigma \mathrm{x}_{\mathrm{i}}}{20}\right)^2=4 $
$ \Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}^2}{20}-(10)^2=4 $
$ \Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}^2}{20}=104 $
$ \Rightarrow \Sigma \mathrm{x}_{\mathrm{i}}^2=2080$
Now, replaced $'8'$ observations by $'12'$
$\text { Then, } \Sigma \mathrm{x}_{\mathrm{i}}^2=2080-8^2+12^2=2160$
$\therefore$ Variance of removing observations
$ \Rightarrow \frac{\Sigma x_i^2}{20}-\left(\frac{\Sigma x_i}{20}\right)^2 $
$ \Rightarrow \frac{2160}{20}-(10.2)^2 $
$ \Rightarrow 108-104.04 $
$ \Rightarrow 3.96$
Correct standard deviation
$=\sqrt{3.96}$
Similar Questions
For the frequency distribution :
Variate $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
Frequency $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
where $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ and
$\sum \limits_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be