The mean and standard deviation of $20$ observations are found to be $10$ and $2$, respectively. On respectively, it was found that an observation by mistake was taken $8$ instead of $12$ . The correct standard deviation is
$\sqrt{3.86}$
$ 1.8$
$\sqrt{3.96}$
$1.94$
Statement $1$ : The variance of first $n$ odd natural numbers is $\frac{{{n^2} - 1}}{3}$
Statement $2$ : The sum of first $n$ odd natural number is $n^2$ and the sum of square of first $n$ odd natural numbers is $\frac{{n\left( {4{n^2} + 1} \right)}}{3}$
If each observation of a raw data whose variance is ${\sigma ^2}$, is multiplied by $\lambda$, then the variance of the new set is
Let $\mathrm{n}$ be an odd natural number such that the variance of $1,2,3,4, \ldots, \mathrm{n}$ is $14 .$ Then $\mathrm{n}$ is equal to ..... .
If the standard deviation of the numbers $ 2,3,a $ and $11$ is $3.5$ then which of the following is true ?
If each of the observation $x_{1}, x_{2}, \ldots ., x_{n}$ is increased by $'a'$ where $a$ is a negative or positive number, show that the variance remains unchanged.