- Home
- Standard 11
- Mathematics
The mean and standard deviation of $20$ observations are found to be $10$ and $2$, respectively. On respectively, it was found that an observation by mistake was taken $8$ instead of $12$ . The correct standard deviation is
$\sqrt{3.86}$
$ 1.8$
$\sqrt{3.96}$
$1.94$
Solution
Mean $(\bar{x})=10$
$ \Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}}{20}=10 $
$ \Sigma \mathrm{x}_{\mathrm{i}}=10 \times 20=200$
If $8$ is replaced by $12$ , then $\Sigma x_1=200-8+12=204$
$\therefore$ Correct mean $(\overline{\mathrm{x}})=\frac{\Sigma \mathrm{x}_{\mathrm{i}}}{20}$
$=\frac{204}{20}=10.2$
$ \because$ Standard deviation $=2$
$ \therefore$ Variance $=( S.D.)^2=2^2=4 $
$ \Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}^2}{20}-\left(\frac{\Sigma \mathrm{x}_{\mathrm{i}}}{20}\right)^2=4 $
$ \Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}^2}{20}-(10)^2=4 $
$ \Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}^2}{20}=104 $
$ \Rightarrow \Sigma \mathrm{x}_{\mathrm{i}}^2=2080$
Now, replaced $'8'$ observations by $'12'$
$\text { Then, } \Sigma \mathrm{x}_{\mathrm{i}}^2=2080-8^2+12^2=2160$
$\therefore$ Variance of removing observations
$ \Rightarrow \frac{\Sigma x_i^2}{20}-\left(\frac{\Sigma x_i}{20}\right)^2 $
$ \Rightarrow \frac{2160}{20}-(10.2)^2 $
$ \Rightarrow 108-104.04 $
$ \Rightarrow 3.96$
Correct standard deviation
$=\sqrt{3.96}$
Similar Questions
The mean and standard deviation of marks obtained by $50$ students of a class in three subjects, Mathematics, Physics and Chemistry are given below:
Subject | Mathematics | Physics | Chemistty |
Mean | $42$ | $32$ | $40.9$ |
Standard deviation | $12$ | $15$ | $20$ |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
If the mean and variance of the frequency distribution
$x_i$ | $2$ | $4$ | $6$ | $8$ | $10$ | $12$ | $14$ | $16$ |
$f_i$ | $4$ | $4$ | $\alpha$ | $15$ | $8$ | $\beta$ | $4$ | $5$ |
are $9$ and $15.08$ respectively, then the value of $\alpha^2+\beta^2-\alpha \beta$ is $…………$.
Find the variance and standard deviation for the following data:
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |