Find the middle terms in the expansions of $\left(3-\frac{x^{3}}{6}\right)^{7}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that in the expansion of $(a+b)^{n},$ in $n$ is odd, then there are two middle terms, Namely $\left(\frac{n+1}{2}\right)^{th}$ term and $\left(\frac{n+1}{2}+1\right)^{th}$ term

Therefore, the middle terms in the expansion $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $\left(\frac{7+1}{2}\right)^{th}=4^{th}$ and $\left(\frac{7+1}{2}+1\right)^{th}=5^{th}$ term

${T_4} = {T_{3 + 1}} = {\,^7}{C_3}{(3)^{7 - 3}}{\left( { - \frac{{{x^3}}}{6}} \right)^3} = {( - 1)^3}\frac{{7!}}{{3!4!}} \cdot {3^4} \cdot \frac{{{x^9}}}{{{6^3}}}$

$=-\frac{7 \cdot 6 \cdot 5 \cdot 4 !}{3 \cdot 2 \cdot 4 !} \cdot 3^{4} \cdot \frac{1}{2^{3} \cdot 3^{3}} \cdot x^{9}=-\frac{105}{8} x^{9}$

${T_5} = {T_{4 + 1}} = {\,^7}{C_4}{(3)^{7 - 4}}{\left( { - \frac{{{x^3}}}{6}} \right)^4} = {( - 1)^4}\frac{{7!}}{{4!3!}} \cdot {3^3} \cdot \frac{{{x^{12}}}}{{{6^4}}}$

$=\frac{7 \cdot 6 \cdot 5.4 !}{4 ! \cdot 3 \cdot 2} \cdot \frac{3^{3}}{2^{4} \cdot 3^{4}} \cdot x^{12}=\frac{35}{48} x^{12}$

Thus, the middle terms in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $-\frac{105}{8} x^{9}$ and $\frac{35}{48} x^{12}$

Similar Questions

The least value of $n$ for which the number of integral terms in the Binomial expansion of $(\sqrt[3]{7}+\sqrt[12]{11})^{ n }$ is $183$ , is :

  • [JEE MAIN 2025]

If the maximum value of the term independent of $t$ in the expansion of $\left( t ^{2} x ^{\frac{1}{5}}+\frac{(1- x )^{\frac{1}{10}}}{ t }\right)^{15}, x \geq 0$, is $K$, then $8\,K$ is equal to $....$

  • [JEE MAIN 2022]

The greatest term in the expansion of $\sqrt 3 {\left( {1 + \frac{1}{{\sqrt 3 }}} \right)^{20}}$ is

The middle term in the expansion of ${(1 + x)^{2n}}$ is

If the term without $x$ in the expansion of $\left( x ^{\frac{2}{3}}+\frac{\alpha}{ x ^3}\right)^{22}$ is $7315$ , then $|\alpha|$ is equal to $...........$.

  • [JEE MAIN 2023]