7.Binomial Theorem
hard

If the coefficients of $x^2$ and $x^3$ are both zero, in the expansion of the expression $(1 + ax + bx^2) (1 -3x)^{t5}$ in powers of $x$, then the ordered pair $(a, b)$ is equal to

A

$(-54, 315)$

B

$(28, 861)$

C

$(28, 315)$

D

$(-21, 714)$

(JEE MAIN-2019)

Solution

Coefficient of $x^{2}=^{15} C_{2} \times 9-3 a\left(^{15} C_{1}\right)+b=0$

$\Rightarrow^{15} \mathrm{C}_{2} \times 9-45 \mathrm{a}+\mathrm{b}=0………(1)$

Coefficient of $x^{3}=-27 \times^{15} \mathrm{C}_{3}+9 \mathrm{a} \times^{15} \mathrm{C}_{2}-3 \mathrm{b} \times^{15} \mathrm{C}_{1}=0$

$\Rightarrow-273+21 a-b=0………(2)$

$(1)+(2)$ give

$-24 a+672=0$

$\Rightarrow \quad a=28, b=315$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.