If the coefficients of $x^2$ and $x^3$ are both zero, in the expansion of the expression $(1 + ax + bx^2) (1 -3x)^{t5}$ in powers of $x$, then the ordered pair $(a, b)$ is equal to
$(-54, 315)$
$(28, 861)$
$(28, 315)$
$(-21, 714)$
Evaluate $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$
Coefficient of $t^{20}$ in the expansion of $(1 + t^2)^{10}(1 + t^{10})(1 + t^{20})$ is
If the coefficients of ${x^2}$ and ${x^3}$ in the expansion of ${(3 + ax)^9}$ are the same, then the value of $a$ is
If the term independent of $x$ in the expansion of $\left(\sqrt{\mathrm{ax}}{ }^2+\frac{1}{2 \mathrm{x}^3}\right)^{10}$ is 105 , then $\mathrm{a}^2$ is equal to :
Find $a$ if the $17^{\text {th }}$ and $18^{\text {th }}$ terms of the expansion ${(2 + a)^{{\rm{50 }}}}$ are equal.