If the coefficients of $x^2$ and $x^3$ are both zero, in the expansion of the expression $(1 + ax + bx^2) (1 -3x)^{t5}$ in powers of $x$, then the ordered pair $(a, b)$ is equal to
$(-54, 315)$
$(28, 861)$
$(28, 315)$
$(-21, 714)$
If the coefficients of second, third and fourth term in the expansion of ${(1 + x)^{2n}}$ are in $A.P.$, then $2{n^2} - 9n + 7$ is equal to
If sum of the coefficient of the first, second and third terms of the expansion of ${\left( {{x^2} + \frac{1}{x}} \right)^m}$ is $46$, then the coefficient of the term that doesnot contain $x$ is :-
Let $\mathrm{m}$ and $\mathrm{n}$ be the coefficients of seventh and thirteenth terms respectively in the expansion of $\left(\frac{1}{3} \mathrm{x}^{\frac{1}{3}}+\frac{1}{2 \mathrm{x}^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}$ is :
If the coefficient of $x ^{15}$ in the expansion of $\left(a x^3+\frac{1}{b x^{\frac{1}{3}}}\right)^{15}$ is equal to the coefficient of $x^{-15}$ in the expansion of $\left(a x^{\frac{1}{3}}-\frac{1}{b x^3}\right)^{15}$, where $a$ and $b$ are positive real numbers, then for each such ordered pair $(a, b) :$
If the coefficients of $x$ and $x^{2}$ in the expansion of $(1+x)^{p}(1-x)^{q}, p, q \leq 15$, are $-3$ and $-5$ respectively, then the coefficient of $x ^{3}$ is equal to $............$