If the $1011^{\text {th }}$ term from the end in the binomial expansion of $\left(\frac{4 x}{5}-\frac{5}{2 x }\right)^{2022}$ is $1024$ times $1011^{\text {th }}$ term from the beginning, then $|x|$ is equal to
$12$
$8$
$\frac{5}{16}$
$15$
If the coefficient of ${x^7}$ in ${\left( {a{x^2} + \frac{1}{{bx}}} \right)^{11}}$ is equal to the coefficient of ${x^{ - 7}}$ in ${\left( {ax - \frac{1}{{b{x^2}}}} \right)^{11}}$, then $ab =$
If in the expansion of ${(1 + x)^m}{(1 - x)^n}$, the coefficient of $x$ and ${x^2}$ are $3$ and $-6$ respectively, then m is
In the expansion of ${\left( {3x - \frac{1}{{{x^2}}}} \right)^{10}}$ then $5^{th}$ term from the end is :-
If $n$ is the degree of the polynomial,
${\left[ {\frac{1}{{\sqrt {5{x^3} + 1} - \sqrt {5{x^3} - 1} }}} \right]^8} $$+ {\left[ {\frac{1}{{\sqrt {5{x^3} + 1} + \sqrt {5{x^3} - 1} }}} \right]^8}$ and $m$ is the coefficient of $x^{12}$ in it, then the ordered pair $(n, m)$ is equal to
In the expansion of ${(1 + x + {x^3} + {x^4})^{10}},$ the coefficient of ${x^4}$ is