સંકર સંખ્યાનો માનાંક અને કોણાંક શોધો. $z=-\sqrt{3}+i$
$z=-\sqrt{3}+i$
Let $r \cos \theta=-\sqrt{3}$ and $r \sin \theta=1$
On squaring and adding, we obtain
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-\sqrt{3})^{2}+1^{2}$
$\Rightarrow r^{2}=3+1=4 \quad\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow r=\sqrt{4}=2 \quad[\text { Conventionally }, r>0]$
$\therefore$ Modulus $=2$
$\therefore 2 \cos \theta=-\sqrt{3}$ and $2 \sin \theta=1$
$\Rightarrow \cos \theta=\frac{-\sqrt{3}}{2}$ and $\sin \theta=\frac{1}{2}$
$\therefore \theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$ [As $\theta$ lies in the $II$ quadrant]
Thus, the modulus an argument of the complex number $-\sqrt{3}+i$ are $2$ and $\frac{5 \pi}{6}$ respectively.
જો $Arg(z)$ એ સંકર સંખ્યા $z$ નો મુખ્ય કોણાક દર્શાવે તો $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ ની કિમત મેળવો
જો સંકર સંખ્યાઓ $z_1$, $z_2$ એવા મળે કે જેથી $\left| {{z_1}} \right| = \sqrt 2 ,\left| {{z_2}} \right| = \sqrt 3$ અને $\left| {{z_1} + {z_2}} \right| = \sqrt {5 - 2\sqrt 3 }$, હોય તો $|Arg z_1 -Arg z_2|$ ની કિમત મેળવો
ધારો કે $z _{1}$ અને $z _{2}$ બંને એવી સંકર સંખ્યાઓ છે કે જેથી $\overline{ z }_{1}=i \overline{ z }_{2}$ અને $\arg \left(\frac{ z _{1}}{\overline{ z }_{2}}\right)=\pi$ તો ............
જો $z_1$ એ $z\bar{z} = 1$ પર બિંદુ છે અને $z_2$ એ બીજું બિંદુ $(4 -3i)z + (4 + 3i)z -15 = 0$, પર હોય તો $|z_1 -z_2|_{min}$ ની કિમત મેળવો
(જ્યાં $ i = \sqrt { - 1}$ )
જો $A$ અને $B$ એ ભિન્ન સંકર સંખ્યાઓ હોય તથા $|\beta|=1,$ તો $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$ ની કિંમત શોધો.