સંકર સંખ્યાનો માનાંક અને કોણાંક શોધો. $z=-\sqrt{3}+i$
$z=-\sqrt{3}+i$
Let $r \cos \theta=-\sqrt{3}$ and $r \sin \theta=1$
On squaring and adding, we obtain
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-\sqrt{3})^{2}+1^{2}$
$\Rightarrow r^{2}=3+1=4 \quad\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow r=\sqrt{4}=2 \quad[\text { Conventionally }, r>0]$
$\therefore$ Modulus $=2$
$\therefore 2 \cos \theta=-\sqrt{3}$ and $2 \sin \theta=1$
$\Rightarrow \cos \theta=\frac{-\sqrt{3}}{2}$ and $\sin \theta=\frac{1}{2}$
$\therefore \theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$ [As $\theta$ lies in the $II$ quadrant]
Thus, the modulus an argument of the complex number $-\sqrt{3}+i$ are $2$ and $\frac{5 \pi}{6}$ respectively.
જો $\frac{3+i \sin \theta}{4-i \cos \theta}, \theta \in[0,2 \pi],$ એ વાસ્તવિક કિમંત હોય તો $\sin \theta+\mathrm{i} \cos \theta$ નો કોણાંક મેળવો.
$\frac{{1 + i}}{{1 - i}}$ ના કોણાંક અને માનાંક મેળવો.
વિધાનો
વિધાન $I$: કોઈ બે શુન્યેતર સંકર સંખ્યાઓ $z_1, z_2$
માટે $\left(\left|z_1\right|+\left|z_2\right|\right)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right)$ અને
વિધાન $II$ : જો $x, y, z$ એ ત્રણ ભિન્ન સંકર સંખ્યાઓ હોય તથા $\mathrm{a}, \mathrm{b}, \mathrm{c}$ એ ત્રણ ધન વાસ્તવિક સંખ્યાઓ એવી હોય કે જેથી
$\frac{\mathrm{a}}{|y-z|}=\frac{\mathrm{b}}{|z-x|}=\frac{\mathrm{c}}{|x-y|}$ તો $\frac{\mathrm{a}^2}{y-z}+\frac{\mathrm{b}^2}{z-x}+\frac{\mathrm{c}^2}{x-y}=1$
જો ${z_1}$ અને ${z_2}$ બે સંકર સંખ્યા છે કે જેથી $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ તો arg $({z_1}) - $arg $({z_2})$ = . . . ..
સંકર સંખ્યા $z$ ની એવી કેટલી કિમતો મળે કે જેથી $\left| z \right| + z - 3\bar z = 0$ થાય?