4-1.Complex numbers
easy

જો $|z|\, = 4$ અને $arg\,\,z = \frac{{5\pi }}{6},$તો $z =$

A

$2\sqrt 3 - 2i$

B

$2\sqrt 3 + 2i$

C

$ - 2\sqrt 3 + 2i$

D

$ - \sqrt 3 + i$

Solution

(c)$|z| = 4$and $arg\,z = \frac{{5\pi }}{6} = {150^o}$
Let $z = x + iy$, then $|z| = r = \sqrt {{x^2} + {y^2}} = 4$
and $\theta = \frac{{5\pi }}{6} = {150^o}$
$\therefore $ $x = r\cos \theta = 4\cos \,\,{150^o} = – 2\sqrt 3 $.
and $y = r\sin \theta = 4$$\sin {150^o} = 4\frac{1}{2} = 2$
$\therefore $ $z = x + iy = – 2\sqrt 3 + 2i$
Trick : Since $arg\,z = \frac{{5\pi }}{6} = {150^o}$, 

here the complex number must lie in second quadrant, so $(a) $ and $(b) $ rejected. Also $|z| = 4$ which satisfies $(c)$ only.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.