If $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, then the value of $\theta $ is
If $(1 + \tan \theta )(1 + \tan \phi ) = 2$, then $\theta + \phi =$ ....$^o$
If $\sin 2\theta = \cos \theta ,\,\,0 < \theta < \pi $, then the possible values of $\theta $ are
$\sum\limits_{r = 1}^{100} {\frac{{\tan \,{2^{r - 1}}}}{{\cos \,{2^r}}}} $ is equal to
Number of solutions of $8cosx$ = $x$ will be