Find the solution of $\sin x=-\frac{\sqrt{3}}{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have $\sin x=-\frac{\sqrt{3}}{2}$

$=-\sin \frac{\pi}{3}=\sin \left(\pi+\frac{\pi}{3}\right)$

$=\sin \frac{4 \pi}{3}$

Hence $\sin x=\sin \frac{4 \pi}{3},$ which gives

$x=n \pi+(-1)^{n} \frac{4 \pi}{3}, \text { where } n \in Z$

Similar Questions

If $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, then the value of $\theta $ is

If $(1 + \tan \theta )(1 + \tan \phi ) = 2$, then $\theta + \phi  =$ ....$^o$

If $\sin 2\theta = \cos \theta ,\,\,0 < \theta < \pi $, then the possible values of $\theta $ are

$\sum\limits_{r = 1}^{100} {\frac{{\tan \,{2^{r - 1}}}}{{\cos \,{2^r}}}} $ is equal to

Number of solutions of $8cosx$ = $x$ will be