If $3({\sec ^2}\theta + {\tan ^2}\theta ) = 5$, then the general value of $\theta $ is
$2n\pi + \frac{\pi }{6}$
$2n\pi \pm \frac{\pi }{6}$
$n\pi \pm \frac{\pi }{6}$
$n\pi \pm \frac{\pi }{3}$
Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$
Solve $\cos x=\frac{1}{2}$
The equation $\sqrt 3 \sin x + \cos x = 4$ has
The number of solutions of the equation $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x, x \in[-3 \pi$ $3 \pi]$ is
The number of solutions of the given equation $\tan \theta + \sec \theta = \sqrt 3 ,$ where $0 < \theta < 2\pi $ is