If $A, B, C, D$ are the angles of a cyclic quadrilateral taken in order, then
$cos(180^o + A) + cos(180^o -B) + cos(180^o -C) -sin(90^o -D)=$

  • A

    $0$

  • B

    $1$

  • C

    $-1$

  • D

    None of these

Similar Questions

The number of solutions of equation $3cos^2x - 8sinx = 0$ in $[0, 3\pi]$ is

One of the solutions of the equation $8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ lies in the interval

  • [KVPY 2017]

$\cot \theta = \sin 2\theta (\theta \ne n\pi $, $n$ is integer), if $\theta = $

The general value of $\theta $  that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in  I)$

The set of values of $x$ for which the expression $\frac{{\tan 3x - \tan 2x}}{{1 + \tan 3x\tan 2x}} = 1$, is