Find the sum of integers from $1$ to $100$ that are divisible by $2$ or $5.$
The integers from $1$ to $100,$ which are divisible by $2,$ are $2,4,6 \ldots \ldots 100$
This forms an $A.P.$ with both the first term and common difference equal to $2.$
$\Rightarrow 100=2+(n-1) 2$
$\Rightarrow n=50$
$\therefore 2+4+6+\ldots \ldots+100=\frac{50}{2}[2(2)+(50-1)(2)]$
$=\frac{50}{2}[4+98]$
$=(25)(102)$
$=2550$
The integers from $1$ to $100 ,$ which are divisible by $5,10 \ldots . .100$
This forms an $A.P.$ with both the first term and common difference equal to $5 .$
$\therefore 100=5+(n-1) 5$
$\Rightarrow 5 n=100$
$\Rightarrow n=20$
$\therefore 5+10+\ldots .+100=\frac{20}{2}[2(5)+(20-1) 5]$
$=10[10+(19) 5]$
$=10[10+95]=10 \times 105$
$=1050$
The integers, which are divisible by both $2$ and $5,$ are $10,20, \ldots \ldots 100$
This also forms an $A.P.$ with both the first term and common difference equal to $10.$
$\therefore 100=10+(n-1)(10)$
$\Rightarrow 100=10 n$
$\Rightarrow n=10$
$\therefore 10+20+\ldots .+100=\frac{10}{2}[2(10)+(10-1)(10)]$
$=5[20+90]=5(110)=550$
$\therefore$ Required sum $=2550+1050-550=3050$
Thus, the sum of the integers from $1$ to $100,$ which are divisible by $2$ or $5,$ is $3050$
If $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ are in $A.P.$ then $x$ equals
If $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, where $a , b , c$ are in $A.P.$ and $|a| < 1,|b| < 1,|c| < 1$, $abc \neq 0$, then
If $a, b, c, d$ are in $G.P.,$ prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in $G.P.$
The ratio of the sums of $m$ and $n$ terms of an $A.P.$ is $m^{2}: n^{2} .$ Show that the ratio of $m^{ th }$ and $n^{ th }$ term is $(2 m-1):(2 n-1)$
If the sum of three numbers in $A.P.,$ is $24$ and their product is $440,$ find the numbers.