The arithmetic mean of the nine numbers in the given set $\{9,99,999,...., 999999999\}$ is a $9$ digit number $N$, all whose digits are distinct. The number $N$ does not contain the digit
$0$
$2$
$5$
$9$
If the sum of $n$ terms of an $A.P.$ is $nA + {n^2}B$, where $A,B$ are constants, then its common difference will be
Let $a_1, a_2, a_3, \ldots, a_{100}$ be an arithmetic progression with $a_1=3$ and $S_p=\sum_{i=1}^p a_i, 1 \leq p \leq 100$. For any integer $n$ with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m m}}{S_n}$ does not depend on $n$, then $a_2$ is
If $\tan \,n\theta = \tan m\theta $, then the different values of $\theta $ will be in
The sum of all the elements in the set $\{\mathrm{n} \in\{1,2, \ldots \ldots ., 100\} \mid$ $H.C.F.$ of $n$ and $2040$ is $1\,\}$ is equal to $.....$
If $a_1 , a_2, a_3, . . . . , a_n, ....$ are in $A.P.$ such that $a_4 - a_7 + a_{10}\, = m$, then the sum of first $13$ terms of this $A.P.$, is .............. $\mathrm{m}$