The arithmetic mean of the nine numbers in the given set $\{9,99,999,...., 999999999\}$ is a $9$ digit number $N$, all whose digits are distinct. The number $N$ does not contain the digit

  • A

    $0$

  • B

    $2$

  • C

    $5$

  • D

    $9$

Similar Questions

The four arithmetic means between $3$ and $23$ are

If the sum of $n$ terms of an $A.P.$ is $nA + {n^2}B$, where $A,B$ are constants, then its common difference will be

A farmer buys a used tractor for $Rs$ $12000 .$ He pays $Rs$ $6000$ cash and agrees to pay the balance in annual instalments of $Rs$ $500$ plus $12 \%$ interest on the unpaid amount. How much will the tractor cost him?

Let $V_{\mathrm{r}}$ denote the sum of the first $\mathrm{r}$ terms of an arithmetic progression $(A.P.)$ whose first term is $\mathrm{r}$ and the common difference is $(2 \mathrm{r}-1)$. Let

$T_{\mathrm{I}}=V_{\mathrm{r}+1}-V_{\mathrm{I}}-2 \text { and } \mathrm{Q}_{\mathrm{I}}=T_{\mathrm{r}+1}-\mathrm{T}_{\mathrm{r}} \text { for } \mathrm{r}=1,2, \ldots$

$1.$  The sum $V_1+V_2+\ldots+V_n$ is

$(A)$ $\frac{1}{12} n(n+1)\left(3 n^2-n+1\right)$

$(B)$ $\frac{1}{12} n(n+1)\left(3 n^2+n+2\right)$

$(C)$ $\frac{1}{2} n\left(2 n^2-n+1\right)$

$(D)$ $\frac{1}{3}\left(2 n^3-2 n+3\right)$

$2.$  $\mathrm{T}_{\mathrm{T}}$ is always

$(A)$ an odd number $(B)$ an even number

$(C)$ a prime number $(D)$ a composite number

$3.$  Which one of the following is a correct statement?

$(A)$ $Q_1, Q_2, Q_3, \ldots$ are in $A.P.$ with common difference $5$

$(B)$ $\mathrm{Q}_1, \mathrm{Q}_2, \mathrm{Q}_3, \ldots$ are in $A.P.$ with common difference $6$

$(C)$ $\mathrm{Q}_1, \mathrm{Q}_2, \mathrm{Q}_3, \ldots$ are in $A.P.$ with common difference $11$

$(D)$ $Q_1=Q_2=Q_3=\ldots$

Give the answer question $1,2$ and $3.$

  • [IIT 2007]

If $f(x + y,x - y) = xy\,,$ then the arithmetic mean of $f(x,y)$ and $f(y,x)$ is