Find the union of each of the following pairs of sets :
$A = \{ x:x$ is a natural number and $1\, < \,x\, \le \,6\} $
$B = \{ x:x$ is a natural number and $6\, < \,x\, < \,10\} $
$A = \{ x:x$ is a natural number and $1\, < \,x\, \le \,6\} = \{ 2,3,4,5,6\} $
$B = \{ x:x$ is a natural number and $6\, < \,x\, < \,10\} = \{ 7,8,9\} $
$A \cup B=\{2,3,4,5,6,7,8,9\}$
$\therefore A \cup B = \{ x:x \in N$ and $1\, < \,x\, < \,10\} $
Show that $A \cap B=A \cap C$ need not imply $B = C$
If $A$ and $B$ are any two sets, then $A \cap (A \cup B)$ is equal to
$A$ and $B$ are two subsets of set $S$ = $\{1,2,3,4\}$ such that $A\ \cup \ B$ = $S$ , then number of ordered pair of $(A, B)$ is
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap B$
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$C-B$