3 and 4 .Determinants and Matrices
easy

સમીકરણ $\left[\begin{array}{cc}a-b & 2 a+c \\ 2 a-b & 3 c+d\end{array}\right]=\left[\begin{array}{cc}-1 & 5 \\ 0 & 13\end{array}\right]$ માંથી $a,b,c$ અને $d$ તેનાં મૂલ્ય શોધો.

A

$a=0$,  $b=2 $,   $c=3$,   $d=4 $

B

$a=1$,  $b=2 $,   $c=3$,   $d=4 $

C

$a=1$,  $b=2 $,   $c=3$,   $d=0 $

D

$a=1$,  $b=3 $,   $c=3$,   $d=4 $

Solution

$\left[\begin{array}{cc}a-b & 2 a+c \\ 2 a-b & 3 c+d\end{array}\right]=\left[\begin{array}{cc}-1 & 5 \\ 0 & 13\end{array}\right]$

As the two matrices are equal, their corresponding elements are also equal. Comparing the corresponding elements, we get:

$a-b=-1$            ……….. $(1)$

$2 a-b=0$             ……….. $(2)$

$2 a+c=5$             ……….. $(3)$

$3 c+d=13$             ……….. $(4)$

From $( 2 )$, we have :

$b=2 a$

Then, from $( 1 )$, we have :

$a-2a=-1$

$\Rightarrow$   $a=1$

$\Rightarrow$   $b=2$

Now, from $(3),$ we have :

$2 \times 1+c=5$

$\Rightarrow $  $c=3$

From $(4)$ we have :

$ 3 \times 3+d=13 $

$ \Rightarrow   $   $9+d=13 \Rightarrow d=4$

$\therefore $  $a=1$,  $b=2 $,   $c=3$,  and  $d=4 $

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.