Find the value of $\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$
Firstly, the expression $(x+y)^{4}+(x-y)^{4}$ is simplified by using Binomial Theorem.
This can be done as
${(x + y)^4} = {\,^4}{C_0}{x^4} + {\,^4}{C_1}{x^3}y + {\,^4}{C_2}{x^2}{y^2} + {\,^4}{C_3}x{y^3} + {\,^4}{C_4}{y^4}$
$=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}$
${(x - y)^4} = {\,^4}{C_0}{x^4} - {\,^4}{C_1}{x^3}y + {\,^4}{C_2}{x^2}{y^2} - {\,^4}{C_3}x{y^3} + {\,^4}{C_4}{y^4}$
$=x^{4}-4 x^{3} y+6 x^{2} y^{2}-4 x y^{3}+y^{4}$
$\therefore(x+y)^{4}+(x-y)^{4}=2\left(x^{4}+6 x^{2} y^{2}+y^{4}\right)$
Putting $x=a^{2}$ and $y=\sqrt{a^{2}-1},$ we obtain
$\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}=2\left[\left(a^{2}\right)^{4}+6\left(a^{2}\right)^{2}(\sqrt{a^{2}-1})^{2}+(\sqrt{a^{2}-1})^{4}\right]$
$=2\left[a^{8}+6 a^{4}\left(a^{2}-1\right)+\left(a^{2}-1\right)^{2}\right]$
$=2\left[a^{8}+6 a^{6}-6 a^{4}+a^{4}-2 a^{2}+1\right]$
$=2\left[a^{8}+6 a^{6}-5 a^{4}-2 a^{2}+1\right]$
$=2 a^{8}+12 a^{6}-10 a^{4}-4 a^{2}+2$
If $^n{C_{r - 2}} = 36$ , $^n{C_{r - 1}} = 84$ and $^n{C_r} = 126$ , then value of $^n{C_{2r}}$ is
If the maximum value of the term independent of $t$ in the expansion of $\left( t ^{2} x ^{\frac{1}{5}}+\frac{(1- x )^{\frac{1}{10}}}{ t }\right)^{15}, x \geq 0$, is $K$, then $8\,K$ is equal to $....$
The coefficient of $\frac{1}{x}$ in the expansion of ${\left( {1 + x} \right)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ is :-
If the coefficients of $(r-5)^{th}$ and $(2 r-1)^{th}$ terms in the expansion of $(1+x)^{34}$ are equal, find $r$
If the ${(r + 1)^{th}}$ term in the expansion of ${\left( {\sqrt[3]{{\frac{a}{{\sqrt b }}}} + \sqrt {\frac{b}{{\sqrt[3]{a}}}} } \right)^{21}}$ has the same power of $a$ and $b$, then the value of $r$ is