3 and 4 .Determinants and Matrices
medium

प्रत्येक में $k$ का मान ज्ञात कीजिए यदि त्रिभुजों का क्षेत्रफल $4$ वर्ग इकाई है जहाँ शीर्षबिंदु निम्नलिखित हैं:

$(\mathrm{k}, 0),(4,0),(0,2)$

A

$0,3$

B

$0,5$

C

$0,8$

D

$0,9$

Solution

We know that the area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is the absolute value of the determinant ( $\Delta$ ),  where

$\Delta=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$

It is given that the area of triangle is $4$ square units.

$\therefore \Delta=\pm 4$

The area of the triangle with vertices $(k, 0),(4,0),(0,2)$ is given by the relation,

$\Delta=\frac{1}{2}\left|\begin{array}{lll}k & 0 & 1 \\ 4 & 0 & 1 \\ 0 & 2 & 1\end{array}\right|$

$=\frac{1}{2}[k(0-2)-0(4-0)+1(8-0)]$

$=\frac{1}{2}[-2 k+8]=k+4$

$\therefore-k+4=\pm 4$

When $-k+4=-4, k=8$

When $-k+4=-4, k=0$

Hence, $k=0,8$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.