Following forces start acting on a particle at rest at the origin of the co-ordinate system simultaneously${\overrightarrow F _1} = - 4\hat i - 5\hat j + 5\hat k$, ${\overrightarrow F _2} = 5\hat i + 8\hat j + 6\hat k$, ${\overrightarrow F _3} = - 3\hat i + 4\hat j - 7\hat k$ and ${\overrightarrow F _4} = 2\hat i - 3\hat j - 2\hat k$ then the particle will move
In $x -y$ plane
In $y -z$ plane
In $x -z$ plane
Along $x -$ axis
The resultant of two vectors $\vec{A}$ and $\vec{B}$ is perpendicular to $\overrightarrow{\mathrm{A}}$ and its magnitude is half that of $\vec{B}$. The angle between vectors $\vec{A}$ and $\vec{B}$ is . . . . . .
Find the magnitude and direction of the resultant of two vectors $A$ and $B$ in terms of their magnitudes and angle $\theta$ between them.
Explain resolution of vectors.
Vector$\overrightarrow A $ makes equal angles with $x, y$ and $z$ axis. Value of its components (in terms of magnitude of $\overrightarrow A $) will be
Colum $I$ | Colum $II$ |
$(A)$ $x-$axis | $(p)$ $5\,unit$ |
$(B)$ Along another vector $(2 \hat{ i }+\hat{ j }+2 \hat{ k })$ | $(q)$ $4\,unit$ |
$(C)$ Along $(6 \hat{ i }+8 \hat{ j }-10 \hat{ k })$ | $(r)$ $0$ |
$(D)$ Along another vector $(-3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ | $(s)$ None |